Combination of dispersive solid phase extraction and deep eutectic solvent-based air-assisted liquid-liquid microextraction followed by gas chromatography-mass spectrometry as an efficient analytical method for the quantification of some tricyclic antidep

来自 PUBMED

作者:

Mohebbi AYaripour SFarajzadeh MAAfshar Mogaddam MR

展开

摘要:

A dispersive solid phase extraction coupled with deep eutectic solvent-based air-assisted liquid-liquid microextraction has been developed and applied to the extraction and preconcentration of some tricyclic antidepressant drugs in the human urine and plasma samples prior to their determination by gas chromatography-mass spectrometry. In this method, a sorbent (C18) is first added into an alkaline aqueous sample and dispersed by vortexing. By this action, the analytes are adsorbed onto the sorbent. Then, the sorbent particles are isolated from the aqueous solution by centrifugation. Afterward, a deep eutectic solvent, prepared from choline chloride and 4-chlorophenol is used to desorb the analytes from the sorbent. Subsequently, the supernatant solution is removed and added into an alkaline deionized water placed into a test tube with a conical bottom. The resulting mixture is rapidly sucked into a glass syringe and then injected into the tube. This procedure is repeated for several times and a cloudy solution consisting of fine droplets of deep eutectic solvent dispersed into the aqueous phase is formed. After centrifuging the obtained cloudy solution, the tiny droplets of the extractant, containing the extracted analytes, settle at the bottom of the tube. Finally, an aliquot of the extractant is taken and injected into the separation system for quantitative analysis. Several significant factors affecting the performance of the proposed method are evaluated and optimized. Under optimum extraction conditions, the method shows low limits of detection in the ranges of 5-10, 8-15 and 32-60 ng L-1 in deionized water, urine, and plasma, respectively. Enrichment factors are observed to be between 325 to 385 in deionized water, 155 to 185 in urine, and 64 to 72 in plasma. Extraction recoveries are in the range of 65-77 (in deionized water), 62-74 (in urine), and 64-72% (in plasma). The relative standard deviations of the proposed method are ≤ 6% for intra- (n = 6) and inter-day (n = 4) precisions at a concentration of 200 ng L-1 of each analyte. Finally, the applicability of the introduced method is investigated by analyzing the selected drugs in different biological fluids. In the proposed method, for the first time, a deep eutectic solvent composed of safe, cheap, and biodegradable compounds was synthesized and used (at μL-level) as an elution and extraction solvent, simultaneously which led to omit the consumption of toxic organic solvents. This represents a significant advantage in the era of green chemistry. In addition, the introduced method is sensitive, simple in operation, rapid, and efficient.

收起

展开

DOI:

10.1016/j.chroma.2018.08.022

被引量:

6

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(3528)

参考文献(0)

引证文献(6)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读