Upregulated microRNA-194 impairs stemness of cholangiocarcinoma cells through the Rho pathway via inhibition of ECT2.

来自 PUBMED

作者:

Gao JDai CYu XYin XBZhou F

展开

摘要:

Cholangiocarcinoma (CCA) is devastating for its delayed presence, difficulty in diagnosis, and high mortality. Other studies have supported the important role of microRNAs (miRNAs) in the pathogenesis of CCA, and the role of miR-194 was investigated in several human cancers, though, the molecular mechanism of miR-194 in CCA stem cells remains largely unknown. We aimed to identify the functional significance of miR-194 in CCA. The microarray-based analysis was applied to detect the epithelial cell transforming sequence 2 (ECT2) expression and predict the miRNA-regulated ECT2, followed by the identification of relationship between ECT2 and obtained miRNA by dual-luciferase reporter gene assay. The effects of depletion or ectopic expression of miR-194 on Rho pathway and the biological characteristics of CCA were assessed by reverse transcription quantitative polymerase chain reaction, immunoblotting, 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide, scratch test, Transwell, and flow cytometry. Lastly, tumor growth was assessed by xenograft tumor in nude mice. ECT2 was highly expressed while miR-194 was poorly expressed in CCA stem cells, and the targeting relation between ECT2 and miR-194 was proved. More important, the elevated expression of miR-194 or ECT2 silencing inhibited the Rho pathway, and further promoted the apoptosis and suppressed the stem cell proliferation, migration, and invasion of CCA in vitro. miR-194 inhibited the tumor growth in vivo. In a word, miR-194 inhibits ECT2 and blocks the activation of Rho signaling pathway, thus promoting apoptosis, inhibiting proliferation and migration of CCA stem cells, and suppressing tumor growth. The mechanism can be regarded as a target for treating CCA.

收起

展开

DOI:

10.1002/jcb.29648

被引量:

9

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(347)

参考文献(0)

引证文献(9)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读