LncRNA HOTAIR suppresses cell apoptosis, autophagy and induces cell proliferation in cholangiocarcinoma by modulating the miR-204-5p/HMGB1 axis.

来自 PUBMED

作者:

Lu MQin XZhou YLi GLiu ZYue HGeng X

展开

摘要:

Cholangiocarcinoma (CCA) is a malignant tumor in the world. LncRNA HOX transcript antisense intergenic RNA (HOTAIR) was identified as a crucial regulator in various cancers including CCA. This study aimed to unravel the functions of HOTAIR and its biological mechanism in CCA, hinting for the new therapeutic targets in CCA. The levels of HOTAIR, miR-204-5p and HMGB1 in CCA tissues and cell lines (HuB28 and HuCCT1) were measured by quantitative real-time polymerase chain reaction (qRT-PCR). Western blot was conducted to detect the protein levels of LC3-I, LC3-II, Beclin-1 and HMGB1. The relationships among HOTAIR, miR-204-5p and HMGB1 were examined by dual-luciferase reporter assay, RNA immunoprecipitation (RIP) assay and RNA pull down assay. Cell proliferation ability and apoptosis rate were assessed by CCK8 assay and flow cytometry, respectively. in vivo experiment was conducted to examine the bio-functions of HOTAIR in nude mice. HOTAIR and HMGB1 were over-expressed, while miR-204-5p was lowly expressed in CCA tissues and cells. The dual-luciferase reporter assay indicated that miR-204-5p was a target of HOTAIR, and HMGB1 was a target of miR-204-5p. The restoration experiments showed that HOTAIR repressed cell apoptosis, autophagy and promoted cell proliferation via miR-204-5p/HMGB1 axis. Additionally, HOTAIR silencing retarded the xenograft tumor growth by up-regulation of miR-204-5p and down-regulation of HMGB1. These data unraveled that lncRNA HOTAIR regulated HMGB1 to suppress cell apoptosis, autophagy and induce cell proliferation by sponging miR-204-5p in CCA. Thus, this new regulatory pathway may provide new therapeutic targets for CCA.

收起

展开

DOI:

10.1016/j.biopha.2020.110566

被引量:

18

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(525)

参考文献(0)

引证文献(18)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读