FFF-VMAT for SBRT of lung lesions: Improves dose coverage at tumor-lung interface compared to flattened beams.

来自 PUBMED

作者:

Pokhrel DHalfman MSanford L

展开

摘要:

To quantify the differences in dosimetry as a function of ipsilateral lung density and treatment delivery parameters for stereotactic, single dose of volumetric modulated arc therapy (VMAT) lung stereotactic body radiation therapy (SBRT) delivered with 6X flattening filter free (6X-FFF) beams compared to traditional flattened 6X (6X-FF) beams. Thirteen consecutive early stage I-II non-small-cell-lung cancer (NSCLC) patients were treated with highly conformal noncoplanar VMAT SBRT plans (3-6 partial arcs) using 6X-FFF beam and advanced Acuros-based dose calculations to a prescription dose of 30 Gy in one fraction to the tumor margin. These clinical cases included relatively smaller tumor (island tumors) sizes (2.0-4.2 cm diameters) and varying average ipsilateral lung densities between 0.14 g/cc and 0.34 g/cc. Treatment plans were reoptimized with 6X-FF beams for identical beam/arc geometries and planning objectives. For same target coverage, the organs-at-risk (OAR) dose metrics as a function of ipsilateral lung density were compared between 6X-FFF and 6X-FF plans. Moreover, monitor units (MU), beam modulation factor (MF) and beam-on time (BOT) were evaluated. Both plans met the RTOG-0915 protocol compliance. The ipsilateral lung density and the tumor location heavily influenced the treatment plans with 6X-FFF and 6X-FF beams, showing differences up to 12% for the gradient indices. For similar target coverage, 6X-FFF beams showed better target conformity, lower intermediate dose-spillage, and lower dose to the OAR. Additionally, BOT was reduced by a factor of 2.3 with 6X-FFF beams compared to 6X-FF beams. While prescribing dose to the tumor periphery, 6X-FFF VMAT plans for stereotactic single-dose lung SBRT provided similar target coverage with better dose conformity, superior intermediate dose-spillage (improved dose coverage at tumor interface), and improved OAR sparing compared to traditional 6X-FF beams and significantly reduced treatment time. The ipsilateral lung density and tumor location considerably affected dose distributions requiring special attention for clinical SBRT plan optimization on a per-patient basis. Clinical follow up of these patients for tumor local-control rate and treatment-related toxicities is in progress.

收起

展开

DOI:

10.1002/acm2.12764

被引量:

25

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(670)

参考文献(37)

引证文献(25)

来源期刊

Journal of Applied Clinical Medical Physics

影响因子:2.241

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读