Improving treatment efficiency via photon optimizer (PO) MLC algorithm for synchronous single-isocenter/multiple-lesions VMAT lung SBRT.

来自 PUBMED

作者:

Sanford LPokhrel D

展开

摘要:

Elderly patients with multiple primary or oligometastases (<5 lesions) lesions with associated co-morbidities may not retain their treatment position for the traditional long SBRT treatment time with individual isocenters for each lesion. Treating multiple lesions synchronously using a single-isocenter volumetric arc therapy (VMAT) plan would be more efficient with the use of the most recently adopted photon optimizer (PO) MLC algorithm and improve the patient comfort. Herein, we quantified the clinical performance of PO versus its predecessor progressive resolution optimizer (PRO) algorithm for single-isocenter/multiple-lesions VMAT lung SBRT. Fourteen patients with metastatic non-small-cell lung cancer lesions (two to five, both uni- and bilateral lungs) received a highly conformal single-isocenter co/non-coplanar VMAT (2-6 arcs) SBRT treatment plan. Patients were treated with a 6X-FFF beam and Acuros algorithm with a single-isocenter placed between/among the lesions, using PO for MLC optimization. Average isocenter to tumor distance was 5.5 ± 1.9 cm. Mean combined PTV derived from 4D-CT scans was 38.7 ± 22.7 cc. Doses were 54 Gy/50 Gy in 3/5 fractions prescribed to 70%-80% isodose line so that at least 95% of the PTV receives 100% of prescribed dose. Plans were re-optimized using PRO algorithm. Plans were compared via ROTG-0915 protocol criteria for target conformity, heterogeneity and gradient indices, and dose to organs-at-risk (OAR). Additionally, total number of monitor units (MU), modulation factor (MF) and beam-on time were compared. All plans met SBRT protocol requirements for target coverage and OAR doses. Comparison of target coverage and dose to the OAR showed no statistical significance between the two plans. PO had 1042 ± 753 (P < 0.001) less MU than PRO resulting in a beam-on time of about 0.75 ± 0.5 min (P < 0.001) less, on average. For similar dose distribution, a significant reduction of beam delivery complexity was observed with PO (average MF = 3.7 ± 0.7) vs PRO MLC algorithm (average MF = 4.4 ± 1.3) (P < 0.001). PO MLC algorithm improved treatment efficiency without compromising plan quality when compared to PRO algorithm for single-isocenter/multi-lesions VMAT lung SBRT. Shorter beam-on time can potentially reduce intrafraction motion errors and improve patient compliance. PO MLC algorithm is recommended for future clinical lung SBRT plan optimization.

收起

展开

DOI:

10.1002/acm2.12721

被引量:

7

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(699)

参考文献(17)

引证文献(7)

来源期刊

Journal of Applied Clinical Medical Physics

影响因子:2.241

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读