-
Single-step genome-wide association for longitudinal traits of Canadian Ayrshire, Holstein, and Jersey dairy cattle.
Estimating single nucleotide polymorphism (SNP) effects over time is essential to identify and validate candidate genes (or quantitative trait loci) associated with time-dependent variation of economically important traits and to better understand the underlying mechanisms of lactation biology. Therefore, in this study, we aimed to estimate time-dependent effects of SNP and identifying candidate genes associated with milk (MY), fat (FY), and protein (PY) yields, and somatic cell score (SCS) in the first 3 lactations of Canadian Ayrshire, Holstein, and Jersey breeds, as well as suggest their potential pattern of phenotypic effect over time. Random regression coefficients for the additive direct genetic effect were estimated for each animal using single-step genomic BLUP, based on 2 random regression models: one considering MY, FY, and PY in the first 3 lactations and the other considering SCS in the first 3 lactations. Thereafter, SNP solutions were obtained for random regression coefficients, which were used to estimate the SNP effects over time (from 5 to 305 d in lactation). The top 1% of SNP that showed a high magnitude of SNP effect in at least 1 d in lactation were selected as relevant SNP for further analyses of candidate genes, and clustered according to the trajectory of their SNP effects over time. The majority of SNP selected for MY, FY, and PY increased the magnitude of their effects over time, for all breeds. In contrast, for SCS, most selected SNP decreased the magnitude of their effects over time, especially for the Holstein and Jersey breeds. In general, we identified a different set of candidate genes for each breed, and similar genes were found across different lactations for the same trait in the same breed. For some of the candidate genes, the suggested pattern of phenotypic effect changed among lactations. Among the lactations, candidate genes (and their suggested phenotypic effect over time) identified for the second and third lactations were more similar to each other than for the first lactation. Well-known candidate genes with major effects on milk production traits presented different suggested patterns of phenotypic effect across breeds, traits, and lactations in which they were identified. The candidate genes identified in this study can be used as target genes in studies of gene expression.
Oliveira HR
,Lourenco DAL
,Masuda Y
,Misztal I
,Tsuruta S
,Jamrozik J
,Brito LF
,Silva FF
,Cant JP
,Schenkel FS
... -
《-》
-
Genome-wide association for milk production traits and somatic cell score in different lactation stages of Ayrshire, Holstein, and Jersey dairy cattle.
We performed genome-wide association analyses for milk, fat, and protein yields and somatic cell score based on lactation stages in the first 3 parities of Canadian Ayrshire, Holstein, and Jersey cattle. The genome-wide association analyses were performed considering 3 different lactation stages for each trait and parity: from 5 to 95, from 96 to 215, and from 216 to 305 d in milk. Effects of single nucleotide polymorphisms (SNP) for each lactation stage, trait, parity, and breed were estimated by back-solving the direct breeding values estimated using the genomic best linear unbiased predictor and single-trait random regression test-day models containing only the fixed population average curve and the random genomic curves. To identify important genomic regions related to the analyzed lactation stages, traits, parities and breeds, moving windows (SNP-by-SNP) of 20 adjacent SNP explaining more than 0.30% of total genetic variance were selected for further analyses of candidate genes. A lower number of genomic windows with a relatively higher proportion of the explained genetic variance was found in the Holstein breed compared with the Ayrshire and Jersey breeds. Genomic regions associated with the analyzed traits were located on 12, 8, and 15 chromosomes for the Ayrshire, Holstein, and Jersey breeds, respectively. Especially for the Holstein breed, many of the identified candidate genes supported previous reports in the literature. However, well-known genes with major effects on milk production traits (e.g., diacylglycerol O-acyltransferase 1) showed contrasting results among lactation stages, traits, and parities of different breeds. Therefore, our results suggest evidence of differential sets of candidate genes underlying the phenotypic expression of the analyzed traits across breeds, parities, and lactation stages. Further functional studies are needed to validate our findings in independent populations.
Oliveira HR
,Cant JP
,Brito LF
,Feitosa FLB
,Chud TCS
,Fonseca PAS
,Jamrozik J
,Silva FF
,Lourenco DAL
,Schenkel FS
... -
《-》
-
Short communication: Time-dependent genetic parameters and single-step genome-wide association analyses for predicted milk fatty acid composition in Ayrshire and Jersey dairy cattle.
Milk fat content and fatty acid (FA) composition have great economic value to the dairy industry as they are directly associated with taste and chemical-physical characteristics of milk and dairy products. In addition, consumers' choices are not only based on the nutritional aspects of food, but also on products known to promote better health. Milk FA composition is also related to the metabolic status and physiological stages of cows and thus can also be used as indicator for other novel traits of interest (e.g., metabolic diseases and methane yield). Genetic selection is a promising alternative to manipulate milk FA composition. In this study, we aimed to (1) estimate time-dependent genetic parameters for 5 milk FA groups (i.e., short-chain, medium-chain, long-chain, saturated, and unsaturated) predicted based on milk mid-infrared spectroscopy, for Canadian Ayrshire and Jersey breeds, and (2) conduct a time-dependent, single-step genome-wide association study to identify genomic regions, candidate genes, and metabolic pathways associated with milk FA. We analyzed 31,709 test-day records of 9,648 Ayrshire cows from 268 herds, and 34,341 records of 11,479 Jersey cows from 883 herds. The genomic database contained a total of 2,330 Ayrshire and 1,019 Jersey animals. The average daily heritability ranged from 0.18 (long-chain FA) to 0.34 (medium-chain FA) in Ayrshire, and from 0.25 (long-chain and unsaturated FA) to 0.52 (medium-chain and saturated FA) in Jersey. Important genomic regions were identified in Bos taurus autosomes BTA3, BTA5, BTA12, BTA13, BTA14, BTA16, BTA18, BTA20, and BTA21. The proportion of the variance explained by 20 adjacent SNP ranged from 0.71% (saturated FA) to 1.11% (long-chain FA) in Ayrshire, and from 0.70% (unsaturated FA) to 3.09% (medium-chain FA) in Jersey cattle. Important candidate genes and pathways were also identified, such as the PTK2 and TRAPPC9 genes, associated with milk fat percentage, and HMGCS, FGF10, and C6 genes, associated with fertility traits and immune response. Our findings on the genetic parameters and candidate genes contribute to a better understanding of the genetic architecture of milk FA composition in Ayrshire and Jersey dairy cattle.
Freitas PHF
,Oliveira HR
,Silva FF
,Fleming A
,Schenkel FS
,Miglior F
,Brito LF
... -
《-》
-
Application of single-step genomic evaluation using multiple-trait random regression test-day models in dairy cattle.
Test-day traits are important for genetic evaluation in dairy cattle and are better modeled by multiple-trait random regression models (RRM). The reliability and bias of genomic estimated breeding values (GEBV) predicted using multiple-trait RRM via single-step genomic best linear unbiased prediction (ssGBLUP) were investigated in the 3 major dairy cattle breeds in Canada (i.e., Ayrshire, Holstein, and Jersey). Individual additive genomic random regression coefficients for the test-day traits were predicted using 2 multiple-trait RRM: (1) one for milk, fat, and protein yields in the first, second, and third lactations, and (2) one for somatic cell score in the first, second, and third lactations. The predicted coefficients were used to derive GEBV for each lactation day and, subsequently, the daily GEBV were compared with traditional daily parent averages obtained by BLUP. To ensure compatibility between pedigree and genomic information for genotyped animals, different scaling factors for combining the inverse of genomic (G) and pedigree (A) relationship matrices were tested. In addition, the inclusion of only genotypes from animals with accurate breeding values (defined in preliminary analysis) was compared with the inclusion of all available genotypes in the analyzes. The ssGBLUP model led to considerably larger validation reliabilities than the BLUP model without genomic information. In general, scaling factors used to combine the G and A matrices had small influence on the validation reliabilities. However, a greater effect was observed in the inflation of GEBV. Less inflated GEBV were obtained by the ssGBLUP compared with the parent average from traditional BLUP when using optimal scaling factors to combine the G and A matrices. Similar results were observed when including either all available genotypes or only genotypes from animals with accurate breeding values. These findings indicate that ssGBLUP using multiple-trait RRM increases reliability and reduces bias of breeding values of young animals when compared with parent average from traditional BLUP in the Canadian Ayrshire, Holstein, and Jersey breeds.
Oliveira HR
,Lourenco DAL
,Masuda Y
,Misztal I
,Tsuruta S
,Jamrozik J
,Brito LF
,Silva FF
,Schenkel FS
... -
《-》
-
Genetic parameters and genome-wide association studies for mozzarella and milk production traits, lactation length, and lactation persistency in Murrah buffaloes.
Genetic and genomic analyses of longitudinal traits related to milk production efficiency are paramount for optimizing water buffaloes breeding schemes. Therefore, this study aimed to (1) compare single-trait random regression models under a single-step genomic BLUP setting based on alternative covariance functions (i.e., Wood, Wilmink, and Ali and Schaeffer) to describe milk (MY), fat (FY), protein (PY), and mozzarella (MZY) yields, fat-to-protein ratio (FPR), somatic cell score (SCS), lactation length (LL), and lactation persistency (LP) in Murrah dairy buffaloes (Bubalus bubalis); (2) combine the best functions for each trait under a multiple-trait framework; (3) estimate time-dependent SNP effects for all the studied longitudinal traits; and (4) identify the most likely candidate genes associated with the traits. A total of 323,140 test-day records from the first lactation of 4,588 Murrah buffaloes were made available for the study. The model included the average curve of the population nested within herd-year-season of calving, systematic effects of number of milkings per day, and age at first calving as linear and quadratic covariates, and additive genetic, permanent environment, and residual as random effects. The Wood model had the best goodness of fit based on the deviance information criterion and posterior model probabilities for all traits. Moderate heritabilities were estimated over time for most traits (0.30 ± 0.02 for MY; 0.26 ± 0.03 for FY; 0.45 ± 0.04 for PY; 0.28 ± 0.05 for MZY; 0.13 ± 0.02 for FPR; and 0.15 ± 0.03 for SCS). The heritability estimates for LP ranged from 0.38 ± 0.02 to 0.65 ± 0.03 depending on the trait definition used. Similarly, heritabilities estimated for LL ranged from 0.10 ± 0.01 to 0.14 ± 0.03. The genetic correlation estimates across days in milk (DIM) for all traits ranged from -0.06 (186-215 DIM for MY-SCS) to 0.78 (66-95 DIM for PY-MZY). The SNP effects calculated for the random regression model coefficients were used to estimate the SNP effects throughout the lactation curve (from 5 to 305 d). Numerous relevant genomic regions and candidate genes were identified for all traits, confirming their polygenic nature. The candidate genes identified contribute to a better understanding of the genetic background of milk-related traits in Murrah buffaloes and reinforce the value of incorporating genomic information in their breeding programs.
Lázaro SF
,Tonhati H
,Oliveira HR
,Silva AA
,Scalez DCB
,Nascimento AV
,Santos DJA
,Stefani G
,Carvalho IS
,Sandoval AF
,Brito LF
... -
《-》