Radiomic analysis for preoperative prediction of cervical lymph node metastasis in patients with papillary thyroid carcinoma.

来自 PUBMED

作者:

Lu WZhong LDong DFang MDai QLeng SZhang LSun WTian JZheng JJin Y

展开

摘要:

Cervical lymph node (LN) metastasis of papillary thyroid carcinoma (PTC) is critical for treatment and prognosis. We explored the feasibility of using radiomics to preoperatively predict cervical LN metastasis in PTC patients. Total 221 PTC patients (training cohort: n = 154; validation cohort: n = 67; divided randomly at the ratio of 7:3) were enrolled and divided into 2 groups based on LN pathologic diagnosis (N0: n = 118; N1a and N1b: n = 88 and 15, respectively). We extracted 546 radiomic features from non-contrast and venous contrast-enhanced computed tomography (CT) images. We selected 8 groups of candidate feature sets by minimum redundancy maximum relevance (mRMR), and obtained 8 radiomic sub-signatures by support vector machine (SVM) to construct the radiomic signature. Incorporating the radiomic signature, CT-reported cervical LN status and clinical risk factors, a nomogram was constructed using multivariable logistic regression. The nomogram's calibration, discrimination, and clinical utility were assessed. The radiomic signature was associated significantly with cervical LN status (p < 0.01 for both training and validation cohorts). The radiomic signature showed better predictive performance than any radiomic sub-signatures devised by SVM. Addition of radiomic signature to the nomogram improved the predictive value (area under the curve (AUC), 0.807 to 0.867) in the training cohort; this was confirmed in an independent validation cohort (AUC, 0.795 to 0.822). Good agreement was observed using calibration curves in both cohorts. Decision curve analysis demonstrated the radiomic nomogram was worthy of clinical application. Our radiomic nomogram improved the preoperative prediction of cervical LN metastasis in PTC patients.

收起

展开

DOI:

10.1016/j.ejrad.2019.07.018

被引量:

40

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(680)

参考文献(0)

引证文献(40)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读