Ultrasound-Based Radiomic Nomogram for Predicting Lateral Cervical Lymph Node Metastasis in Papillary Thyroid Carcinoma.

来自 PUBMED

作者:

Tong YLi JHuang YZhou JLiu TGuo YYu JZhou SWang YChang C

展开

摘要:

Accurate preoperative identification of lateral cervical lymph node metastasis (LNM) is important for decision-making and clinical management of patients with papillary thyroid carcinoma (PTC). The aim of this study was to develop an ultrasound (US)-based radiomic nomogram to preoperatively predict the lateral LNM in PTC patients. In this retrospective study, a total of 886 patients were enrolled and randomly divided into 2 groups. Radiomic features were extracted from the preoperative US images. A radiomic signature was constructed using the least absolute shrinkage and selection operator algorithm in the training set. Multivariate logistic regression was performed to develop the radiomic nomogram, which incorporating the radiomic signature and the selected clinical characteristics. The performance of the nomogram was assessed by its discrimination, calibration, and clinical usefulness in both the training and validation sets. The radiomic signature was significantly associated with the lateral LNM in both cohorts (p< 0.001). The nomogram that consisted of radiomic signature, US-reported cervical lymph node (CLN) status, and CT-reported CLN status demonstrated good discrimination and calibration in the training and validation sets with an AUC of 0.946 and 0.914, respectively. The decision curve analysis indicated that the radiomic nomogram was worthy of clinical application. The radiomic nomogram proposed here has good performance for noninvasively predicting the lateral LNM and might be used to facilitate clinical decision-making and potentially improve the survival outcome in selected patients.

收起

展开

DOI:

10.1016/j.acra.2020.07.017

被引量:

33

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(408)

参考文献(0)

引证文献(33)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读