Validation of ultrasound strategies to assess tumor extension and to predict high-risk endometrial cancer in women from the prospective IETA (International Endometrial Tumor Analysis)-4 cohort.

来自 PUBMED

摘要:

To compare the performance of ultrasound measurements and subjective ultrasound assessment (SA) in detecting deep myometrial invasion (MI) and cervical stromal invasion (CSI) in women with endometrial cancer, overall and according to whether they had low- or high-grade disease separately, and to validate published measurement cut-offs and prediction models to identify MI, CSI and high-risk disease (Grade-3 endometrioid or non-endometrioid cancer and/or deep MI and/or CSI). The study comprised 1538 patients with endometrial cancer from the International Endometrial Tumor Analysis (IETA)-4 prospective multicenter study, who underwent standardized expert transvaginal ultrasound examination. SA and ultrasound measurements were used to predict deep MI and CSI. We assessed the diagnostic accuracy of the tumor/uterine anteroposterior (AP) diameter ratio for detecting deep MI and that of the distance from the lower margin of the tumor to the outer cervical os (Dist-OCO) for detecting CSI. We also validated two two-step strategies for the prediction of high-risk cancer; in the first step, biopsy-confirmed Grade-3 endometrioid or mucinous or non-endometrioid cancers were classified as high-risk cancer, while the second step encompassed the application of a mathematical model to classify the remaining tumors. The 'subjective prediction model' included biopsy grade (Grade 1 vs Grade 2) and subjective assessment of deep MI or CSI (presence or absence) as variables, while the 'objective prediction model' included biopsy grade (Grade 1 vs Grade 2) and minimal tumor-free margin. The predictive performance of the two two-step strategies was compared with that of simply classifying patients as high risk if either deep MI or CSI was suspected based on SA or if biopsy showed Grade-3 endometrioid or mucinous or non-endometrioid histotype (i.e. combining SA with biopsy grade). Histological assessment from hysterectomy was considered the reference standard. In 1275 patients with measurable lesions, the sensitivity and specificity of SA for detecting deep MI was 70% and 80%, respectively, in patients with a Grade-1 or -2 endometrioid or mucinous tumor vs 76% and 64% in patients with a Grade-3 endometrioid or mucinous or a non-endometrioid tumor. The corresponding values for the detection of CSI were 51% and 94% vs 50% and 91%. Tumor AP diameter and tumor/uterine AP diameter ratio showed the best performance for predicting deep MI (area under the receiver-operating characteristics curve (AUC) of 0.76 and 0.77, respectively), and Dist-OCO had the best performance for predicting CSI (AUC, 0.72). The proportion of patients classified correctly as having high-risk cancer was 80% when simply combining SA with biopsy grade vs 80% and 74% when using the subjective and objective two-step strategies, respectively. The subjective and objective models had an AUC of 0.76 and 0.75, respectively, when applied to Grade-1 and -2 endometrioid tumors. In the hands of experienced ultrasound examiners, SA was superior to ultrasound measurements for the prediction of deep MI and CSI of endometrial cancer, especially in patients with a Grade-1 or -2 tumor. The mathematical models for the prediction of high-risk cancer performed as expected. The best strategies for predicting high-risk endometrial cancer were combining SA with biopsy grade and the subjective two-step strategy, both having an accuracy of 80%. Copyright © 2019 ISUOG. Published by John Wiley & Sons Ltd.

收起

展开

DOI:

10.1002/uog.20374

被引量:

13

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(240)

参考文献(0)

引证文献(13)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读