Effect of biochar from peanut shell on speciation and availability of lead and zinc in an acidic paddy soil.

来自 PUBMED

作者:

Chao XQian XHan-Hua ZShuai WQi-Hong ZDao-You HYang-Zhu Z

展开

摘要:

Biochar has been used to reduce the mobility and availability of heavy metals in contaminated paddy soils. A pot experiment was carried out to analyze the effects of peanut shell biochar (PBC) on the speciation and phytoavailability of Pb and Zn in contaminated acidic paddy soil using rice (Oryza sativa L.) as an indicator plant. Peanut shell biochar was applied to an acidic paddy soil contaminated with Pb and Zn at four rates (0%, 1%, 2%, and 5% w/w), and rice plants were grown in this soil. The soil pH, cation exchange capacity (CEC), water-soluble SO42-, dissolved organic carbon (DOC), CaCl2-extractable heavy metals, and speciation of heavy metals were determined. Additionally, biomass and concentrations of heavy metals in rice tissues were determined. The application of PBC significantly increased the pH, CEC, water-soluble SO42-, and DOC in the paddy soil, but decreased the content of CaCl2-extractable Pb and Zn. The CaCl2-extractable Pb and Zn showed significant negative correlations with the pH, CEC, water-soluble SO42-, and DOC (p < 0.05). Following the application of biochar to the contaminated paddy soil, the Pb and Zn concentrations in the CaCl2 extracts were reduced by 41.04-98.66% and 17.78-96.87% (p < 0.05), respectively. Sequential chemical extractions showed a reduction in the acid-soluble Pb and Zn fraction and an increase in the reducible fraction following the addition of biochars. PBC obviously inhibited the uptake and accumulation of Pb and Zn in the rice plants. The Pb concentrations in the rice grain were significantly reduced by 60.32%, with the addition of 5% PBC. Neither of the biochars significantly changed the Zn concentrations in the rice grain. The influence of biochar on Pb and Zn phytoavailability varied not only with the application rate of biochar, but also with the kind of metals. Overall, the use of peanut shell biochar at a high application rate is more effective in immobilizing Pb and Zn in the acidic paddy soil contaminated with heavy metals, especially in reducing the phytoavailability of Pb to the rice plants.

收起

展开

DOI:

10.1016/j.ecoenv.2018.08.057

被引量:

4

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(1632)

参考文献(0)

引证文献(4)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读