Effect of biochar from peanut shell on speciation and availability of lead and zinc in an acidic paddy soil.
Biochar has been used to reduce the mobility and availability of heavy metals in contaminated paddy soils. A pot experiment was carried out to analyze the effects of peanut shell biochar (PBC) on the speciation and phytoavailability of Pb and Zn in contaminated acidic paddy soil using rice (Oryza sativa L.) as an indicator plant. Peanut shell biochar was applied to an acidic paddy soil contaminated with Pb and Zn at four rates (0%, 1%, 2%, and 5% w/w), and rice plants were grown in this soil. The soil pH, cation exchange capacity (CEC), water-soluble SO42-, dissolved organic carbon (DOC), CaCl2-extractable heavy metals, and speciation of heavy metals were determined. Additionally, biomass and concentrations of heavy metals in rice tissues were determined. The application of PBC significantly increased the pH, CEC, water-soluble SO42-, and DOC in the paddy soil, but decreased the content of CaCl2-extractable Pb and Zn. The CaCl2-extractable Pb and Zn showed significant negative correlations with the pH, CEC, water-soluble SO42-, and DOC (p < 0.05). Following the application of biochar to the contaminated paddy soil, the Pb and Zn concentrations in the CaCl2 extracts were reduced by 41.04-98.66% and 17.78-96.87% (p < 0.05), respectively. Sequential chemical extractions showed a reduction in the acid-soluble Pb and Zn fraction and an increase in the reducible fraction following the addition of biochars. PBC obviously inhibited the uptake and accumulation of Pb and Zn in the rice plants. The Pb concentrations in the rice grain were significantly reduced by 60.32%, with the addition of 5% PBC. Neither of the biochars significantly changed the Zn concentrations in the rice grain. The influence of biochar on Pb and Zn phytoavailability varied not only with the application rate of biochar, but also with the kind of metals. Overall, the use of peanut shell biochar at a high application rate is more effective in immobilizing Pb and Zn in the acidic paddy soil contaminated with heavy metals, especially in reducing the phytoavailability of Pb to the rice plants.
Chao X
,Qian X
,Han-Hua Z
,Shuai W
,Qi-Hong Z
,Dao-You H
,Yang-Zhu Z
... -
《-》
Effect of bamboo and rice straw biochars on the mobility and redistribution of heavy metals (Cd, Cu, Pb and Zn) in contaminated soil.
Biochar has emerged as an efficient tool to affect bioavailability of heavy metals in contaminated soils. Although partially understood, a carefully designed incubation experiment was performed to examine the effect of biochar on mobility and redistribution of Cd, Cu, Pb and Zn in a sandy loam soil collected from the surroundings of a copper smelter. Bamboo and rice straw biochars with different mesh sizes (<0.25 mm and <1 mm), were applied at three rates (0, 1, and 5% w/w). Heavy metal concentrations in pore water were determined after extraction with 0.01 M CaCl2. Phytoavailable metals were extracted using DTPA/TEA (pH 7.3). The European Union Bureau of Reference (EUBCR) sequential extraction procedure was adopted to determine metal partitioning and redistribution of heavy metals. Results showed that CaCl2-and DTPA-extractable Cd, Cu, Pb and Zn concentrations were significantly (p < 0.05) lower in the bamboo and rice straw biochar treated soils, especially at 5% application rate, than those in the unamended soil. Soil pH values were significantly correlated with CaCl2-extractable metal concentrations (p < 0.01). The EUBCR sequential extraction procedure revealed that the acid extractable fractions of Cd, Cu, Pb and Zn decreased significantly (p < 0.05) with biochar addition. Rice straw biochar was more effective than bamboo biochar in decreasing the acid extractable metal fractions, and the effect was more pronounced with increasing biochar application rate. The effect of biochar particle size on extractable metal concentrations was not consistent. The 5% rice straw biochar treatment reduced the DTPA-extractable metal concentrations in the order of Cd < Cu < Pb < Zn, and reduced the acid extractable pool of Cd, Cu, Pb and Zn by 11, 17, 34 and 6%, respectively, compared to the control. In the same 5% rice straw biochar treatments, the organic bound fraction increased by 37, 58, 68 and 18% for Cd, Cu, Pb and Zn, respectively, compared to the control, indicating that the immobilized metals were mainly bound in the soil organic matter fraction. The results demonstrated that the rice straw biochar can effectively immobilize heavy metals, thereby reducing their mobility and bioavailability in contaminated soils.
Lu K
,Yang X
,Gielen G
,Bolan N
,Ok YS
,Niazi NK
,Xu S
,Yuan G
,Chen X
,Zhang X
,Liu D
,Song Z
,Liu X
,Wang H
... -
《-》
Effect of limestone, lignite and biochar applied alone and combined on cadmium uptake in wheat and rice under rotation in an effluent irrigated field.
Cadmium (Cd) uptake and accumulation in crop plants, especially in wheat (Triticum aestivum) and rice (Oryza sativa) is one of the main concerns for food security worldwide. A field experiment was done to investigate the effects of limestone, lignite, and biochar on growth, physiology and Cd uptake in wheat and rice under rotation irrigated with raw effluents. Initially, each treatment was applied alone at 0.1% and combined at 0.05% each and wheat was grown in the field and then, after wheat harvesting, rice was grown in the same field without additional application of amendments. Results showed that the amendments applied increased the grain and straw yields as well as gas exchange attributes compared to the control. In both crops, highest Cd concentrations in straw and grains and total uptake were observed in control treatments while lowest Cd concentrations was observed in limestone + biochar treatment. No Cd concentrations were detected in wheat grains with the application of amendments except limestone (0.1%). The lowest Cd harvest index was observed in limestone + biochar and lignite + biochar treatments for wheat and rice respectively. Application of amendments decreased the AB-DTPA extractable Cd in the soil while increasing the Cd immobilization index after each crop harvest. The benefit-cost ratio and Cd contents in plants revealed that limestone + biochar treatment might be an effective amendment for increasing plant growth with lower Cd concentrations.
Rehman MZU
,Khalid H
,Akmal F
,Ali S
,Rizwan M
,Qayyum MF
,Iqbal M
,Khalid MU
,Azhar M
... -
《-》