A high level of chloroplast genome sequence variability in the Sawtooth Oak Quercus acutissima.
The Sawtooth Oak, Quercus acutissima Carruth., is an economically and ecologically important tree species in the family Fagaceae with a wide distribution in China. Here, we examined its intraspecific chloroplast (cp) genome variability using available and a newly sequenced genome. The new cp genome comes from a Q. acutissima individual collected from Shenyang (Northeast China; "Q. acutissima Shenyang" in the following), and then is compared with two recently published cp genomes from Tongchuan (Northwest China) and Nanjing (East China). The cp genome of Q. acutissima Shenyang exhibits a slightly larger genome size than the other two individuals, although each encodes 86 protein-coding genes, 40 tRNA genes and eight rRNA genes. We also found the length difference for the IR/SC boundary region among the three cp genomes. Sequence comparison revealed a high intraspecific genetic divergence: the three cp genomes differ by 332 sequence patterns including 77 single nucleotide polymorphisms, and 255 indels (each gap considered) scattering across 67 regions. Phylogenetic analyses based on the cp genome recovered the split between the subgenus Cerris and the subgenus Quercus, but revealed that three Q. acutissima individuals did not cluster together, indicating that even complete cp genome data fail to reproduce species boundaries in Asian members of section Cerris. Our results show that more complete plastomes covering remote ranges needs to be sequenced to provide a solid backbone for future population-scale in-depth studies and phylogenetic analysis of section Cerris.
Zhang RS
,Yang J
,Hu HL
,Xia RX
,Li YP
,Su JF
,Li Q
,Liu YQ
,Qin L
... -
《-》
Comparative genomics of four Liliales families inferred from the complete chloroplast genome sequence of Veratrum patulum O. Loes. (Melanthiaceae).
The sequence of the chloroplast genome, which is inherited maternally, contains useful information for many scientific fields such as plant systematics, biogeography and biotechnology because its characteristics are highly conserved among species. There is an increase in chloroplast genomes of angiosperms that have been sequenced in recent years. In this study, the nucleotide sequence of the chloroplast genome (cpDNA) of Veratrum patulum Loes. (Melanthiaceae, Liliales) was analyzed completely. The circular double-stranded DNA of 153,699 bp consists of two inverted repeat (IR) regions of 26,360 bp each, a large single copy of 83,372 bp, and a small single copy of 17,607 bp. This plastome contains 81 protein-coding genes, 30 distinct tRNA and four genes of rRNA. In addition, there are six hypothetical coding regions (ycf1, ycf2, ycf3, ycf4, ycf15 and ycf68) and two open reading frames (ORF42 and ORF56), which are also found in the chloroplast genomes of the other species. The gene orders and gene contents of the V. patulum plastid genome are similar to that of Smilax china, Lilium longiflorum and Alstroemeria aurea, members of the Smilacaceae, Liliaceae and Alstroemeriaceae (Liliales), respectively. However, the loss rps16 exon 2 in V. patulum results in the difference in the large single copy regions in comparison with other species. The base substitution rate is quite similar among genes of these species. Additionally, the base substitution rate of inverted repeat region was smaller than that of single copy regions in all observed species of Liliales. The IR regions were expanded to trnH_GUG in V. patulum, a part of rps19 in L. longiflorum and A. aurea, and whole sequence of rps19 in S. china. Furthermore, the IGS lengths of rbcL-accD-psaI region were variable among Liliales species, suggesting that this region might be a hotspot of indel events and the informative site for phylogenetic studies in Liliales. In general, the whole chloroplast genome of V. patulum, a potential medicinal plant, will contribute to research on the genetic applications of this genus.
Do HD
,Kim JS
,Kim JH
《-》