Implications of plant growth promoting Klebsiella sp. CPSB4 and Enterobacter sp. CPSB49 in luxuriant growth of tomato plants under chromium stress.
The present study explores the potential of two chromium tolerant and plant growth promoting bacterial strains, Klebsiella sp. and Enterobacter sp. in luxuriant growth of tomato plants under chromium stress conditions. For the assessment of potentiality of the two selected strains, a pot scale experiment was setup with tomato plant under different levels of chromium contamination. In pot experiment, different plant growth parameters, oxidative stress tolerance and chromium bioremediation potential were studied upon inoculation of the selected bacterial strains. The results of pot experiment showed that both the strains were effective in promotion of plant growth and enhanced the plant biomass but Enterobacter sp. was more prominent in enhancement of root length, shoot length, fresh and dry weight, and nutrient uptake in tomato plant. The enhancement of enzymes to combat oxidative stress in tomato plant under chromium stress was also observed for both the strains. Both strains enhanced the levels of superoxide dismutase, catalase, peroxidase, total phenolic, and ascorbic acid in tomato plant under different levels of chromium stress conditions. The chromium phytoremediation potential of tomato plant upon inoculation of both the strains was also studied. The results of phytoremediation showed greater chromium accumulation in roots with poor translocation in shoot upon inoculation of Klebsiella sp. while no significant enhancement in chromium uptake by tomato plant was observed on inoculation of Enterobacter sp. compared to control. Thus, these two strains can effectively be used in luxuriant growth of tomato plant under metal stress conditions.
Gupta P
,Kumar V
,Usmani Z
,Rani R
,Chandra A
,Gupta VK
... -
《-》
Phyto-management of chromium contaminated soils through sunflower under exogenously applied 5-aminolevulinic acid.
Soil contamination with heavy metals is threatening the food security around the globe. Chromium (Cr) contamination results in poor quality and reduction in yield of crops. The present research was performed to figure out the Cr toxicity in sunflower and the ameliorative role of 5-aminolevulinic acid (ALA) as a plant growth regulator. The sunflower (FH-614) was grown under increasing concentration of Cr (0, 5, 10 and 20mgkg-1) alone and/or in combination with 5-ALA (0, 10 and 20mgL-1). Results showed that Cr suppressed the overall growth, biomass, gas exchange attributes and chlorophyll content of sunflower plants. Moreover, lower levels of Cr (5 and 10mgkg-1) increased the production of reactive oxygen species (ROS) and electrolyte leakage (EL) along with the activities of antioxidant enzymes i.e., superoxide dismutase (SOD), guaiacole peroxidase (POD), ascorbate (APX), catalase (CAT). But at higher concentration of Cr (20mgkg-1), the activities of these enzymes presented a declining trend. However, the addition of 5-ALA significantly alleviated the Cr-induced toxicity in sunflower plant and enhanced the plant growth and biomass parameters along with increased chlorophyll content, gas exchange attributes, soluble proteins and soil plant analysis development (SPAD) values by scavenging the ROS and lowering down the EL. The 5-ALA also enhanced the activities of antioxidant enzymes at all levels of Cr. The increase in Cr concentration in all plant parts such as leaf, root and stem was directly proportional to the Cr concentration in soil. The application of 5-ALA further enhanced the uptake of Cr and its concentration in the plants. To understand this variation in response of plants to 5-ALA, detailed studies are required on plant biochemistry and genetic modifications.
Farid M
,Ali S
,Rizwan M
,Ali Q
,Saeed R
,Nasir T
,Abbasi GH
,Rehmani MIA
,Ata-Ul-Karim ST
,Bukhari SAH
,Ahmad T
... -
《-》
The influences of Cr-tolerant rhizobacteria in phytoremediation and attenuation of Cr (VI) stress in agronomic sunflower (Helianthus annuus L.).
Chromium contamination of agronomic soil has to turn into a serious global problem. This research was pointed to assess the effects of three Cr-tolerant rhizobacteria (SS1, SS3, and SS6) on sunflower growth and heavy metal uptake under Cr smog i.e. 20, 30 and 40 ppm using K2Cr2O7. Root promotion assay and pot experiment were conducted to investigate and evaluate the effects of Cr tolerance rhizobacteria and Cr accumulation capacity of sunflower. From root promotion assay non-significant variation was observed in the root length between SS1 and SS3 compared with un-inoculated whereas SS6 enhanced the root length in the absence and presence of chromium. In addition, inoculation with rhizobacteria alleviated the Cr concentration and endorsed plant growth by enhancing Cr accumulation in sunflower. At different Cr levels, the Cr concentration in shoot was improved by each rhizobacterium though their difference was non-significant with each other, while the percentage increase was half as the Cr level doubled. Different rhizobacterium inoculation significantly (P < 0.05) affected the physiological and morphological characteristics of sunflower and increased the plant height, stem diameter, head diameter, grain yield, oil content of seeds, and total biomass, and among them, SS6 observed best followed by SS1 and SS3 comparing with un-inoculated. Our study illustrates an assessment about Cr-tolerant bacteria and their influences and recommends that these bacteria can effectively be used for crop improvement which provides a potential approach for Cr phytoremediation.
Bahadur A
,Ahmad R
,Afzal A
,Feng H
,Suthar V
,Batool A
,Khan A
,Mahmood-Ul-Hassan M
... -
《-》
Role of iron-lysine on morpho-physiological traits and combating chromium toxicity in rapeseed (Brassica napus L.) plants irrigated with different levels of tannery wastewater.
Chromium (Cr) is among the most widespread toxic trace elements found in agricultural soils resulting from various anthropogenic activities. However, the role of micronutrient-amino acid chelates in reducing Cr toxicity in crop plants has recently been suggested. The present study was conducted to explore the effect of iron (Fe) chelated with lysine (lys) on plant growth, biomass, gaseous exchange attributes, oxidative stress indicators, antioxidant response, and Cr uptake in rapeseed (Brassica napus L.) plants irrigated with different levels of tannery wastewater in soil collected from District Kasur of Pakistan. B. napus seedlings (thirty-day-old) were shifted to pots irrigated with different levels of tannery wastewater. After two weeks, foliar application of Fe-lys (5 mM) was carried out for four successive weeks, and plants were harvested carefully post ten weeks of cultivation in tannery wastewater, under controlled conditions. Toxic levels of Cr in the soil significantly decreased plant height, fresh biomass of roots and leaves, dry biomass of roots and leaves, root length, number of leaves, leaf area, total chlorophyll contents, carotenoid contents, transpiration rate (E), stomatal conductance (gs), net photosynthesis (PN), and water use efficiency (WUE). Toxic Cr levels in the soil also increased oxidative stress in the roots and leaves of B. napus plants, which were overcome by the activities of various antioxidant enzymes, such as superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX). Moreover, increasing levels of Cr in the soil caused a significant increase in the Cr content of the roots and shoots of B. napus plants. The negative effects of Cr toxicity could be overturned by Fe-lys application, significantly increasing plant growth, biomass, chlorophyll content, and gaseous exchange attributes by reducing oxidative stress (H2O2, MDA, EL) and enhancing antioxidant enzyme activities. Furthermore, foliar application of Fe-lys reduced the Cr concentration and increased essential micronutrients (Fe contents) in the roots and shoots of B. napus plants. These results shed light on the effectiveness of Fe-lys in improving the growth and up-regulation of antioxidant enzyme activities of B. napus in response to Cr stress. However, further studies at field levels are required to explore the mechanisms of Fe-lys-mediated reduction of the toxicity of not only Cr, but possibly also other heavy metals in plants.
Zaheer IE
,Ali S
,Saleem MH
,Imran M
,Alnusairi GSH
,Alharbi BM
,Riaz M
,Abbas Z
,Rizwan M
,Soliman MH
... -
《-》