-
Relationship between follicular dynamics and oocyte maturation during in vitro culture as a non-invasive sign of caprine oocyte meiotic competence.
The search for non-invasive signs of oocyte meiotic competence is very important for the development of in vitro follicle culture (IVFC) systems. The aims of the present study were: (1) to investigate the effect of in vitro maturation (IVM) of in vivo grown goat COCs, in group or individually, on oocyte chromatin configuration (Experiment 1), and (2) the influence of IVFC period (12 vs. 18 days) on the ability of the oocyte to resume meiosis immediately after IVFC (before in vitro maturation; IVM), or after IVM (Experiment 2). In experiment 1, in vivo grown cumulus-oocyte complexes (COCs) were submitted to IVM in groups (10 COCs/100 μL-drop) or individually (1 COC/10 μL-drop), and chromatin configuration was assessed. In experiment 2, isolated follicles were individually cultured for 12 or 18 days, and submitted to individual IVM afterwards. The following end points were evaluated: follicular growth and morphology, oocyte diameter, viability and chromatin configuration, as well as individual follicular estradiol production. Similar maturation rates were obtained between in vivo grown COCs matured individually and in groups (66.7% vs. 63.6%, respectively) (Experiment 1). Only after 18 days of IVFC, oocytes were able to grow during IVM, reaching a mean oocyte diameter of 119 μm. Also, this treatment produced the highest rate of metaphase II oocytes (46.2% out of the total number of cultured follicles). Finally, it was observed that follicles with a daily growth rate >7.1 μm/day (fast-growing) and that reached at least 600 μm in diameter, were more likely (P < 0.05) to produce oocytes capable of attaining MII. In conclusion, caprine oocytes can be individually matured in vitro, as efficiently as in groups. This result was essential to pair in vitro follicle development and in vitro oocyte maturation with specific individual follicles. Using this approach, it was possible to establish non-invasive signs for the efficiency of IVFC based on follicle daily growth rate and diameter, and oocyte diameter: follicle daily growth >7 μm, follicle diameter of at least 600 μm, and oocyte diameter ≥120 μm. In addition, 18 days seems to be the most suitable culture time for caprine early antral follicles.
Cadenas J
,Maside C
,Ferreira ACA
,Vieira LA
,Leiva-Revilla J
,Paes VM
,Alves BG
,Brandão FZ
,Rodrigues APR
,Wheeler MB
,Figueiredo JR
... -
《-》
-
Insulin-like growth factor II (IGF-II) and follicle stimulating hormone (FSH) combinations can improve the in vitro development of grown oocytes enclosed in caprine preantral follicles.
Evaluate the possible role of IGF-II alone or in association with FSH on in vitro development of isolated caprine preantral follicles.
Preantral follicles (≥150 μm) were isolated from goat ovaries and cultured for 18 days in basic αMEM medium (control) or supplemented with IGF-II alone at 20 or 50 ng/ml, named IGF20 and IGF50, respectively, or in combination with recombinant FSH (FSH, IGF20F or IGF50F). During in vitro culture, the follicles were analyzed by using morphology criteria, antrum formation and growth rate as parameters. After 18 days of follicular culture, oocytes equal to or larger than 110 μm were used for in vitro maturation (IVM). Oocyte viability and meiosis resumption were assessed by fluorescence microscopy after labeling with calcein-AM, ethidium homodimer and Hoechst 33342.
The IGF20 treatment was the only treatment capable of maintaining the percentage of morphologically normal follicles from D0 until D6 and from D12 to D18 (p>0.05), while in all other treatments the percentage of morphologically normal follicles decreased progressively during 18 days of in vitro culture (p<0.05). At D18, all treatments with IGF-II or FSH resulted in a significantly higher percentage of normal follicles when compared to αMEM alone. The IGF50F treatment provided a significantly higher early antrum formation rate when compared to αMEM and FSH alone. The addition of IGF-II alone (20 or 50 ng/ml) or in combination with FSH prevented oocyte degeneration after IVM. Moreover, the FSH treatment demonstrated a lower percentage of oocyte degeneration when compared to control (4.35% vs. 26.3%, respectively; p<0.05). Regarding meiosis resumption, the IGF20F treatment was the only treatment that significantly differed from αMEM alone. All treatments except the control (αMEM alone) presented oocytes at metaphase II.
IGF-II associated with FSH stimulated in vitro follicular development, oocyte viability and meiotic resumption of caprine oocytes after IVM.
Duarte AB
,Araújo VR
,Chaves RN
,da Silva GM
,Luz VB
,Haag KT
,Magalhães-Padilha DM
,Almeida AP
,Lobo CH
,Campello CC
,de Figueiredo JR
... -
《-》
-
Effect of heat stress on the survival and development of in vitro cultured bovine preantral follicles and on in vitro maturation of cumulus-oocyte complex.
The deleterious effect of heat stress (HS) on competence of oocytes from antral follicles is well recognized, but there is a lack of data regarding its impact on the viability and growth of preantral follicles. In this study, we used in vitro preantral follicle cultures to investigate the effects of HS on the following parameters: survival and development of primordial follicles after in vitro culture of ovarian fragments (experiment I); growth and antrum formation of isolated advanced secondary follicles (experiment II); and maturation rates after in vitro maturation (IVM) of cumulus-oocyte complexes (COCs) from antral follicles (>2-6 mm) grown in vivo (experiment III). Furthermore, the following end points were evaluated in all experiments: follicle/oocyte survival, reactive oxygen species (ROS), estradiol (E2) and progesterone (P4) production, as well as mRNA expression for select genes related to stress (HSP70) and apoptosis (MCL1 and BAX). In all experiments, HS consisted of exposing the structures (ovarian fragments, isolated preantral follicles and COCs) to 41 °C for 12 hours and then to 38.5 °C until the end of the culture (7 days for experiments I and II and 24 hours for experiment III). The temperature for the control group was held at 38.5 °C for the entire culture period. Heat stress increased (P < 0.05) the percentage of developing follicles (intermediate, primary, and secondary follicles) at 12 hours and increased levels of ROS at all evaluated time points (12, 24 hours, and D7), when compared to the control (experiment I). Heat stress did not affect (P > 0.05) any identified end points when preantral follicles were cultured in their isolated form (experiment II). However, in experiment III, HS decreased (P < 0.05) both the rates of metaphase II after 24 hours and E2 production at 12 hours of IVM. Moreover, HS increased (P < 0.0001) levels of P4 after IVM and ROS production at every evaluated time point, compared with the control (12 and 24 hours). In conclusion, HS caused: (1) early activation of primordial follicles; (2) an increase in ROS production by early preantral follicles enclosed in ovarian tissue and by COCs; (3) a short-term reduction of E2 production by COCs; and (4) an increase in P4 secretion from COCs. However, HS did not affect in vitro culture of advanced isolated secondary follicles. Experimental evidence indicates that preantral follicles are less sensitive to HS than COC.
Paes VM
,Vieira LA
,Correia HHV
,Sa NAR
,Moura AAA
,Sales AD
,Rodrigues APR
,Magalhães-Padilha DM
,Santos FW
,Apgar GA
,Campello CC
,Camargo LSA
,Figueiredo JR
... -
《-》
-
Differences in cumulus cell gene expression indicate the benefit of a pre-maturation step to improve in-vitro bovine embryo production.
Does the gene expression profile of cumulus cells (CC) accompanying oocytes with different degrees of chromatin compaction within the germinal vesicle (GV) reflect the oocyte's quality and response in culture during in-vitro embryo production (IVP).
The transcriptomic profile of the CC is related to oocyte competence, setting the stage for the development of customized pre-maturation strategies to improve IVP.
Oocytes complete the acquisition of their competence during antral follicle development. During this period, the chromatin configuration within the GV changes dynamically and is indicative of oocyte's developmental potential. The interactions between somatic and germ cells modulate chromatin morphology and function and are critical for acquisition of oocyte competence.
Bovine cumulus-oocyte complexes (COC) were isolated from 0.5 to 6 mm antral follicles. Surrounding CC were separated from the oocyte and classified as GV0, GV1, GV2 and GV3 according to the degree of the oocyte's chromatin compaction.
RNA extracted from CC of each group was amplified and hybridized on a bovine embryo-specific 44 K Agilent slide. The CC_GV1, CC_GV2 and CC_GV3 classes were each hybridized against the CC_GV0 class, representing an early oocyte differentiation stage with poor development competence. The data were normalized and fold changes of the differentially expressed genes were determined. Microarray data were validated using quantitative RT-PCR on selected targets. Microarray data were further analyzed through: (i) between-group analysis (BGA), which classifies the samples according to their transcriptomic profiles; (ii) cluster analysis according to the expression profile of each gene; and (iii) Ingenuity Pathway Analysis (IPA) to study gene regulation patterns and predicted functions. Furthermore, CC of each GV group were cultured and apoptotic cells were assessed after 3 h by caspase analysis. Finally, based on the analysis of CC transcriptomic profiles and the relationship between morphological features of the COC and the oocyte chromatin configuration, a customized, stage-dependent oocyte pre-maturation (pre-IVM) system was used to improve oocyte developmental potential before IVM. For this, the blastocyst rate and quality were assessed after in-vitro maturation and fertilization of pre-matured oocytes.
Overall, quantitative RT-PCR results of a subset of five selected genes were consistent with the microarray data. Clustering analysis generated 16 clusters representing the main profiles of transcription modulation. Of the 5571 significantly differentially expressed probes, the majority (25.49%) best fitted with cluster #6 (downregulation between CC_GV0 and CC_GV1 and stable low levels in successive groups). IPA identified the most relevant functions associated with each cluster. Genes included in cluster #1 were mostly related to biological processes such as 'cell cycle' and 'cell death and survival', whereas genes included in cluster #5 were mostly related to 'gene expression'. Interestingly, 'lipid metabolism' was the most significant function identified in clusters #6, #9 and #12. IPA of gene lists obtained from each contrast (i.e., CC_GV0 vs. CC_GV1; CC_GV0 vs. CC_GV2; CC_GV0 vs. CC_GV3) revealed that the main affected function in each contrast was 'cell death and survival'. Importantly, apoptosis was predicted to be inhibited in CC_GV1 and CC_GV2, but activated in CC_GV3. Caspase analysis indicated that a low percentage of CC_GV0 was prone to undergo apoptosis but apoptosis increased significantly in CC from oocytes with condensed chromatin, reaching a peak in CC_GV3 (P < 0.05). Finally, the tailored oocyte pre-maturation strategy, based on morphological features of the COC and the oocyte chromatin configuration, demonstrated that pre-IVM improved the developmental capability of oocytes at early stages of differentiation (GV1-enriched COC) but was detrimental for oocytes at more advanced stages of development (GV2 and GV3-enriched COC).
The data are available through the GEO series accession number GSE79886.
This study was conducted with bovine samples. Whether or not the results are applicable to human oocytes requests further elucidation. Embryo transfer experiments are required to determine whether the improvement in blastocyst rates in the tailored system leads to increased live birth rates.
The identification of multiple non-invasive biomarkers predictive of oocyte quality can greatly strengthen the pre-IVM approach aimed to improve IVM outcomes. These results have potentially important implications in treating human infertility and in developing breeding schemes for domestic mammals.
This work was supported in part by NSERC Strategic Network EmbryoGENE, Canada and in part by CIG-Marie Curie Actions-Reintegration Grants within the EU 7FP (n. 303640, 'Pro-Ovum'). The authors declare no potential conflict of interest.
Dieci C
,Lodde V
,Labreque R
,Dufort I
,Tessaro I
,Sirard MA
,Luciano AM
... -
《-》
-
Human cumulus-enclosed germinal vesicle oocytes from early antral follicles reveal heterogeneous cellular and molecular features associated with in vitro maturation capacity.
Are oocyte size, chromatin remodelling, transcriptional activity and mitochondrial distribution in human immature oocytes from early antral follicles retrieved for in vitro maturation (IVM) associated with the acquisition of meiotic competence?
Oocyte size, chromatin compaction, cessation of RNA synthesis and mitochondria rearrangement around the nucleus are associated with the oocyte's potential to resume meiosis in vitro.
Information on oocyte features that confer meiotic competence in human mainly derives from germinal vesicle (GV) oocytes that failed to resume meiosis following an hCG trigger after ovulation induction cycles. Characterization of cumulus-enclosed GV oocytes from small antral follicles prior to IVM provides knowledge on the initial oocyte status and suggests culture requirements in order to promote oocyte competence in vitro.
Prospective collection of 107 oocytes immediately after retrieval (before IVM) and of 293 GV oocytes that had failed to resume meiosis (after IVM).
Human oocytes were collected from women with polycystic ovary syndrome (PCOS), receiving in total 450 IU of highly purified-hMG for IVM treatment (patients) or who donated oocytes for IVM research (donors). Oocytes at GV-stage were retrieved from follicles <10 mm (range 2-10 mm) diameter, before IVM (oocytes at retrieval) or those that failed to mature after IVM (meiotically incompetent). Oocytes were allocated for either mitochondrial staining, by incubating in mitotracker red and then fixed; or for nascent RNA staining, which was assessed by fluorescent labelling (Click-iT(®) RNA Assay). In every case, oocyte diameter was recorded and chromatin was stained after oocyte fixation. GV-stage oocytes were analysed by confocal laser-scanning microscopy and their characteristics were compared and related to their meiotic competence.
Analysis of oocytes at the immature GV-stage revealed that oocytes at retrieval were significantly larger than those that failed to resume meiosis after IVM (112.7 versus 109.6 µm, P < 0.0001). Oocytes assessed at retrieval showed that 50.6% had a condensed chromatin configuration (perinucleolar chromatin rim) and were consistently transcriptionally silent. This rate matched maturation rates in our current in vitro culture system (49%). However, oocytes that had not reinitiated meiosis after 30 h IVM demonstrated, apart of being smaller in diameter, significantly higher rates of dispersed or intermediate chromatin (P = 0.005). Analysis of mitochondrial distribution revealed that many oocytes at retrieval displayed mitochondrial internalization towards the nucleus (12/30) or a perinuclear mitochondrial distribution (6/30). These mitochondrial patterns were observed more rarely in GV incompetent oocytes following 30 h IVM (16/98 and 1/98, respectively).
Most of the analyses involved the use of invasive techniques. Hence, despite the fact that these data deliver essential information on the intrinsic oocyte maturational and developmental status, a direct match with embryological outcomes could not be established.
The evidence described here can aid in tailoring IVM systems in order to promote completion of nuclear and cytoplasmic maturation of unexpanded cumulus-oocyte complexes.
This study was supported by research grants by the Institute for the Promotion of Innovation by Science and Technology in Flanders, project numbers IWT 130327 and 110680; the Fund for Research Flanders, project number FWO G.0343.13, the Belgian Foundation Against Cancer (HOPE project) and COOK Medical. None of the authors has any competing interest to declare.
Sánchez F
,Romero S
,De Vos M
,Verheyen G
,Smitz J
... -
《-》