Characterization of proton pencil beam scanning and passive beam using a high spatial resolution solid-state microdosimeter.

来自 PUBMED

摘要:

This work aims to characterize a proton pencil beam scanning (PBS) and passive double scattering (DS) systems as well as to measure parameters relevant to the relative biological effectiveness (RBE) of the beam using a silicon on insulator (SOI) microdosimeter with well-defined 3D sensitive volumes (SV). The dose equivalent downstream and laterally outside of a clinical PBS treatment field was assessed and compared to that of a DS beam. A novel silicon microdosimeter with well-defined 3D SVs was used in this study. It was connected to low noise electronics, allowing for detection of lineal energies as low as 0.15 keV/μm. The microdosimeter was placed at various depths in a water phantom along the central axis of the proton beam, and at the distal part of the spread-out Bragg peak (SOBP) in 0.5 mm increments. The RBE values of the pristine Bragg peak (BP) and SOBP were derived using the measured microdosimetric lineal energy spectra as inputs to the modified microdosimetric kinetic model (MKM). Geant4 simulations were performed in order to verify the calculated depth-dose distribution from the treatment planning system (TPS) and to compare the simulated dose-mean lineal energy to the experimental results. For a 131 MeV PBS spot (124.6 mm R90 range in water), the measured dose-mean lineal energy yD¯ increased from 2 keV/μm at the entrance to 8 keV/μm in the BP, with a maximum value of 10 keV/μm at the distal edge. The derived RBE distribution for the PBS beam slowly increased from 0.97 ± 0.14 at the entrance to 1.04 ± 0.09 proximal to the BP, then to 1.1 ± 0.08 in the BP, and steeply rose to 1.57 ± 0.19 at the distal part of the BP. The RBE distribution for the DS SOBP beam was approximately 0.96 ± 0.16 to 1.01 ± 0.16 at shallow depths, and 1.01 ± 0.16 to 1.28 ± 0.17 within the SOBP. The RBE significantly increased from 1.29 ± 0.17 to 1.43 ± 0.18 at the distal edge of the SOBP. The SOI microdosimeter with its well-defined 3D SV has applicability in characterizing proton radiation fields and can measure relevant physical parameters to model the RBE with submillimeter spatial resolution. It has been shown that for a physical dose of 1.82 Gy at the BP, the derived RBE based on the MKM model increased from 1.14 to 1.6 in the BP and its distal part. Good agreement was observed between the experimental and simulation results, confirming the potential application of SOI microdosimeter with 3D SV for quality assurance in proton therapy.

收起

展开

DOI:

10.1002/mp.12563

被引量:

8

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(485)

参考文献(0)

引证文献(8)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读