Concentration dependent antioxidative and apoptotic effects of sulforaphane on bovine granulosa cells in vitro.

来自 PUBMED

作者:

Sohel MMHKonca YAkyuz BArslan KSariozkan SCinar MU

展开

摘要:

Sulforaphane (SFN) has received a great deal of research attention because of its ability to induce the production of a battery of antioxidant enzymes in certain concentrations through the activation of the Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) signaling pathway, which may effectively neutralize reactive oxygen species (ROS) induced oxidative stress. This study was conducted to investigate the potential of different concentrations of SFN in inducing antioxidative and apoptotic effects in granulosa cells (GCs). For this purpose, bovine GCs were collected from preovulatory antral follicles and cultured with different concentrations of SFN (0-80 μM) and based on phenotypic evaluation three concentrations were selected: 2 μM (low), 10 μM (medium), and 20 μM (high) for further investigations. The results showed that there was a dramatic loss of cell viability and higher cytotoxic effects of SFN on GCs at higher concentrations (>15 μM). The expression of NRF2 increased significantly (p < 0.05) with fold change ranged 3-8 in SFN treated GCs, whereas Kelch Like ECH Associated Protein 1 (KEAP1) expression was either downregulated or similar as control group under the same conditions. Moreover, the relative expression of the genes (PRDX1, CAT, TXN1and SOD1) downstream to NRF2 activation was found to be highly expressed (fold change ranged from 2 to 5, p < 0.05) in SFN treated GCs compared to the untreated control. In addition, ROS accumulation was higher in GCs treated with 20 μM SFN which in turn results in a higher accumulation of lipid droplets. Compared to control, no changes in the mitochondrial activity was observed at 2 and 10 μM SFN concentrations; however, significantly lower mitochondrial activity was found at high concentration (20 μM). The results of this study clearly showed that 10 μM SFN concentration played a crucial role in activating Nrf2 pathway without inducing apoptotic characteristics and this concentration may have beneficial effects in boosting the production of phase II antioxidant enzymes in GCs. However, at high concentration (20 μM), SFN may generate excessive ROS that causes mitochondrial dysfunction and induces cellular stress and eventually leads to apoptosis. These data strongly suggest a concentration dependent antioxidative and apoptotic effects of SFN on GCs.

收起

展开

DOI:

10.1016/j.theriogenology.2017.04.015

被引量:

3

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(188)

参考文献(0)

引证文献(3)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读