The protective effect of sulforaphane against oxidative stress in granulosa cells of patients with polycystic ovary syndrome (PCOS) through activation of AMPK/AKT/NRF2 signaling pathway.
摘要:
Increased production of reactive oxygen species (ROS) in granulosa cells (GCs) causes oxidative stress (OS) and plays a role in pathogenesis of polycystic ovary syndrome (PCOS). Sulforaphane (SFN) has received a great deal of attention as potent antioxidant because of its ability to induce expression of antioxidant enzymes through nuclear factor (erythroid-derived 2)-like 2 (NRF2) signaling pathway. Therefore, the present study was done to investigate the protective effect of SFN against OS in granulosa-lutein cells (GLCs) of patients with PCOS through activation of AMP-activated protein kinase (AMPK)/AKT/NRF2 signaling pathway. GLCs were isolated from patients with PCOS and healthy fertile women, as control group, during egg retrieval procedure. Level of intracellular ROS and apoptosis was determined in the isolated cells. For investigating the protective effect of SFN against ROS production and apoptosis in GLCs, the cells were cultured for 24 h in the presence or absence of SFN. Finally, expression of AMPK, AKT, and NRF2 proteins and genes was evaluated by western blotting and quantitative real-time polymerase chain reaction (qRT-PCR), respectively. The results indicated the increased ROS and apoptosis levels in GLCs isolated from patients with PCOS compared to the control group. Addition of SFN to culture medium of GLCs of patients with PCOS reduced intracellular ROS and apoptosis levels, and increased expression of AMPK, AKT, and NRF2 proteins and genes. Our findings demonstrated the protective effect of SFN against OS by lowering level of ROS and apoptosis possibly through activation of AMPK, AKT, and NRF2 proteins and genes expression.
收起
展开
DOI:
10.1016/j.repbio.2021.100563
被引量:
年份:
1970


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(293)
参考文献(0)
引证文献(12)
来源期刊
影响因子:暂无数据
JCR分区: 暂无
中科院分区:暂无