-
Efficiency of multi-breed genomic selection for dairy cattle breeds with different sizes of reference population.
Single-breed genomic selection (GS) based on medium single nucleotide polymorphism (SNP) density (~50,000; 50K) is now routinely implemented in several large cattle breeds. However, building large enough reference populations remains a challenge for many medium or small breeds. The high-density BovineHD BeadChip (HD chip; Illumina Inc., San Diego, CA) containing 777,609 SNP developed in 2010 is characterized by short-distance linkage disequilibrium expected to be maintained across breeds. Therefore, combining reference populations can be envisioned. A population of 1,869 influential ancestors from 3 dairy breeds (Holstein, Montbéliarde, and Normande) was genotyped with the HD chip. Using this sample, 50K genotypes were imputed within breed to high-density genotypes, leading to a large HD reference population. This population was used to develop a multi-breed genomic evaluation. The goal of this paper was to investigate the gain of multi-breed genomic evaluation for a small breed. The advantage of using a large breed (Normande in the present study) to mimic a small breed is the large potential validation population to compare alternative genomic selection approaches more reliably. In the Normande breed, 3 training sets were defined with 1,597, 404, and 198 bulls, and a unique validation set included the 394 youngest bulls. For each training set, estimated breeding values (EBV) were computed using pedigree-based BLUP, single-breed BayesC, or multi-breed BayesC for which the reference population was formed by any of the Normande training data sets and 4,989 Holstein and 1,788 Montbéliarde bulls. Phenotypes were standardized by within-breed genetic standard deviation, the proportion of polygenic variance was set to 30%, and the estimated number of SNP with a nonzero effect was about 7,000. The 2 genomic selection (GS) approaches were performed using either the 50K or HD genotypes. The correlations between EBV and observed daughter yield deviations (DYD) were computed for 6 traits and using the different prediction approaches. Compared with pedigree-based BLUP, the average gain in accuracy with GS in small populations was 0.057 for the single-breed and 0.086 for multi-breed approach. This gain was up to 0.193 and 0.209, respectively, with the large reference population. Improvement of EBV prediction due to the multi-breed evaluation was higher for animals not closely related to the reference population. In the case of a breed with a small reference population size, the increase in correlation due to multi-breed GS was 0.141 for bulls without their sire in reference population compared with 0.016 for bulls with their sire in reference population. These results demonstrate that multi-breed GS can contribute to increase genomic evaluation accuracy in small breeds.
Hozé C
,Fritz S
,Phocas F
,Boichard D
,Ducrocq V
,Croiseau P
... -
《-》
-
Assets of imputation to ultra-high density for productive and functional traits.
The aim of this study was to evaluate different-density genotyping panels for genotype imputation and genomic prediction. Genotypes from customized Golden Gate Bovine3K BeadChip [LD3K; low-density (LD) 3,000-marker (3K); Illumina Inc., San Diego, CA] and BovineLD BeadChip [LD6K; 6,000-marker (6K); Illumina Inc.] panels were imputed to the BovineSNP50v2 BeadChip [50K; 50,000-marker; Illumina Inc.]. In addition, LD3K, LD6K, and 50K genotypes were imputed to a BovineHD BeadChip [HD; high-density 800,000-marker (800K) panel], and with predictive ability evaluated and compared subsequently. Comparisons of prediction accuracy were carried out using Random boosting and genomic BLUP. Four traits under selection in the Spanish Holstein population were used: milk yield, fat percentage (FP), somatic cell count, and days open (DO). Training sets at 50K density for imputation and prediction included 1,632 genotypes. Testing sets for imputation from LD to 50K contained 834 genotypes and testing sets for genomic evaluation included 383 bulls. The reference population genotyped at HD included 192 bulls. Imputation using BEAGLE software (http://faculty.washington.edu/browning/beagle/beagle.html) was effective for reconstruction of dense 50K and HD genotypes, even when a small reference population was used, with 98.3% of SNP correctly imputed. Random boosting outperformed genomic BLUP in terms of prediction reliability, mean squared error, and selection effectiveness of top animals in the case of FP. For other traits, however, no clear differences existed between methods. No differences were found between imputed LD and 50K genotypes, whereas evaluation of genotypes imputed to HD was on average across data set, method, and trait, 4% more accurate than 50K prediction, and showed smaller (2%) mean squared error of predictions. Similar bias in regression coefficients was found across data sets but regressions were 0.32 units closer to unity for DO when genotypes were imputed to HD density. Imputation to HD genotypes might produce higher stability in the genomic proofs of young candidates. Regarding selection effectiveness of top animals, more (2%) top bulls were classified correctly with imputed LD6K genotypes than with LD3K. When the original 50K genotypes were used, correct classification of top bulls increased by 1%, and when those genotypes were imputed to HD, 3% more top bulls were detected. Selection effectiveness could be slightly enhanced for certain traits such as FP, somatic cell count, or DO when genotypes are imputed to HD. Genetic evaluation units may consider a trait-dependent strategy in terms of method and genotype density for use in the genome-enhanced evaluations.
Jiménez-Montero JA
,Gianola D
,Weigel K
,Alenda R
,González-Recio O
... -
《-》
-
Improving accuracy of genomic predictions within and between dairy cattle breeds with imputed high-density single nucleotide polymorphism panels.
Achieving accurate genomic estimated breeding values for dairy cattle requires a very large reference population of genotyped and phenotyped individuals. Assembling such reference populations has been achieved for breeds such as Holstein, but is challenging for breeds with fewer individuals. An alternative is to use a multi-breed reference population, such that smaller breeds gain some advantage in accuracy of genomic estimated breeding values (GEBV) from information from larger breeds. However, this requires that marker-quantitative trait loci associations persist across breeds. Here, we assessed the gain in accuracy of GEBV in Jersey cattle as a result of using a combined Holstein and Jersey reference population, with either 39,745 or 624,213 single nucleotide polymorphism (SNP) markers. The surrogate used for accuracy was the correlation of GEBV with daughter trait deviations in a validation population. Two methods were used to predict breeding values, either a genomic BLUP (GBLUP_mod), or a new method, BayesR, which used a mixture of normal distributions as the prior for SNP effects, including one distribution that set SNP effects to zero. The GBLUP_mod method scaled both the genomic relationship matrix and the additive relationship matrix to a base at the time the breeds diverged, and regressed the genomic relationship matrix to account for sampling errors in estimating relationship coefficients due to a finite number of markers, before combining the 2 matrices. Although these modifications did result in less biased breeding values for Jerseys compared with an unmodified genomic relationship matrix, BayesR gave the highest accuracies of GEBV for the 3 traits investigated (milk yield, fat yield, and protein yield), with an average increase in accuracy compared with GBLUP_mod across the 3 traits of 0.05 for both Jerseys and Holsteins. The advantage was limited for either Jerseys or Holsteins in using 624,213 SNP rather than 39,745 SNP (0.01 for Holsteins and 0.03 for Jerseys, averaged across traits). Even this limited and nonsignificant advantage was only observed when BayesR was used. An alternative panel, which extracted the SNP in the transcribed part of the bovine genome from the 624,213 SNP panel (to give 58,532 SNP), performed better, with an increase in accuracy of 0.03 for Jerseys across traits. This panel captures much of the increased genomic content of the 624,213 SNP panel, with the advantage of a greatly reduced number of SNP effects to estimate. Taken together, using this panel, a combined breed reference and using BayesR rather than GBLUP_mod increased the accuracy of GEBV in Jerseys from 0.43 to 0.52, averaged across the 3 traits.
Erbe M
,Hayes BJ
,Matukumalli LK
,Goswami S
,Bowman PJ
,Reich CM
,Mason BA
,Goddard ME
... -
《-》
-
Genomic prediction in French Charolais beef cattle using high-density single nucleotide polymorphism markers.
The objective of the study was to develop a genomic evaluation for French beef cattle breeds and assess accuracy and bias of prediction for different genomic selection strategies. Based on a reference population of 2,682 Charolais bulls and cows, genotyped or imputed to a high-density SNP panel (777K SNP), we tested the influence of different statistical methods, marker densities (50K versus 777K), and training population sizes and structures on the quality of predictions. Four different training sets containing up to 1,979 animals and a unique validation set of 703 young bulls only known on their individual performances were formed. BayesC method had the largest average accuracy compared to genomic BLUP or pedigree-based BLUP. No gain of accuracy was observed when increasing the density of markers from 50K to 777K. For a BayesC model and 777K SNP panels, the accuracy calculated as the correlation between genomic predictions and deregressed EBV (DEBV) divided by the square root of heritability was 0.42 for birth weight, 0.34 for calving ease, 0.45 for weaning weight, 0.52 for muscular development, and 0.27 for skeletal development. Half of the training set constituted animals having only their own performance recorded, whose contribution only represented 5% of the accuracy. Using DEBV as a response brought greater accuracy than using EBV (+5% on average). Considering a residual polygenic component strongly reduced bias for most of the traits. The optimal percentage of polygenic variance varied across traits. Among the methodologies tested to implement genomic selection in the French Charolais beef cattle population, the most accurate and less biased methodology was to analyze DEBV under a BayesC strategy and a residual polygenic component approach. With this approach, a 50K SNP panel performed as well as a 777K panel.
Gunia M
,Saintilan R
,Venot E
,Hozé C
,Fouilloux MN
,Phocas F
... -
《-》
-
Value of sharing cow reference population between countries on reliability of genomic prediction for milk yield traits.
Increasing the reliability of genomic prediction (GP) of economic traits in the pasture-based dairy production systems of New Zealand (NZ) and Australia (AU) is important to both countries. This study assessed if sharing cow phenotype and genotype data of NZ and AU improves the reliability of GP for NZ bulls. Data from approximately 32,000 NZ genotyped cows and their contemporaries were included in the May 2018 routine genetic evaluation of the Australian Dairy cattle in an attempt to provide consistent phenotypes for both countries. After the genetic evaluation, deregressed proofs of cows were calculated for milk yield traits. The April 2018 multiple across-country evaluation of Interbull was also used to calculate deregressed proofs for bulls on the NZ scale. Approximately 1,178 Jersey (Jer) and 6,422 Holstein (Hol) bulls had genotype and phenotype data. In addition to NZ cows, phenotype data of close to 60,000 genotyped Australian (AU) cows from the same genetic evaluation run as NZ cows were used. All AU and NZ females were genotyped using low-density SNP chips (<10K SNP) and were imputed first to 50K and then to ∼600K (referred to as high density; HD). We used up to 98,000 animals in the reference populations, both by expanding the NZ reference set (cow, bull, single breed to multi-breed set) and by adding AU cows. Reliabilities of GP were calculated for 508 Jer and 1,251 Hol bulls whose sires are not included in the reference set (RS) to ensure that real differences are not masked by close relationships. The GP was tested using 50K or high-density SNP chip using genomic BLUP in bivariate (considering country as a trait) or single trait models. The RS that gave the highest reliability for each breed were also tested using a hybrid GP method that combines expectation maximization with Bayes R. The addition of the AU cows to an NZ RS that included either NZ cows only, or cows and bulls, improved the reliability of GP for both NZ Hol and Jer validation bulls for all traits. Using single breed reference populations also increased reliability when NZ crossbred cows were added to reference populations that included only purebred NZ bulls and cows and AU cows. The full multi-breed RS (all NZ cows and bulls and AU cows) provided similar reliabilities in NZ Hol bulls, when compared with the single breed reference with crossbred NZ cows. For Jer validation bulls, the RS that included Jer cows and bulls and crossbred cows from NZ and Jer cows from AU was marginally better than the all-breed, all-country RS. In terms of reliability, the advantage of the HD SNP chip was small but captured more of the genomic variance than the 50K, particularly for Hol. The expectation maximization Bayes R GP method was slightly (up to 3 percentage points) better than genomic BLUP. We conclude that GP of milk production traits in NZ bulls improves by up to 7 percentage points in reliability by expanding the NZ reference population to include AU cows.
Haile-Mariam M
,MacLeod IM
,Bolormaa S
,Schrooten C
,O'Connor E
,de Jong G
,Daetwyler HD
,Pryce JE
... -
《-》