Benchmarking of de novo assembly algorithms for Nanopore data reveals optimal performance of OLC approaches.

来自 PUBMED

作者:

Cherukuri YJanga SC

展开

摘要:

Improved DNA sequencing methods have transformed the field of genomics over the last decade. This has become possible due to the development of inexpensive short read sequencing technologies which have now resulted in three generations of sequencing platforms. More recently, a new fourth generation of Nanopore based single molecule sequencing technology, was developed based on MinION(®) sequencer which is portable, inexpensive and fast. It is capable of generating reads of length greater than 100 kb. Though it has many specific advantages, the two major limitations of the MinION reads are high error rates and the need for the development of downstream pipelines. The algorithms for error correction have already emerged, while development of pipelines is still at nascent stage. In this study, we benchmarked available assembler algorithms to find an appropriate framework that can efficiently assemble Nanopore sequenced reads. To address this, we employed genome-scale Nanopore sequenced datasets available for E. coli and yeast genomes respectively. In order to comprehensively evaluate multiple algorithmic frameworks, we included assemblers based on de Bruijn graphs (Velvet and ABySS), Overlap Layout Consensus (OLC) (Celera) and Greedy extension (SSAKE) approaches. We analyzed the quality, accuracy of the assemblies as well as the computational performance of each of the assemblers included in our benchmark. Our analysis unveiled that OLC-based algorithm, Celera, could generate a high quality assembly with ten times higher N50 & mean contig values as well as one-fifth the number of total number of contigs compared to other tools. Celera was also found to exhibit an average genome coverage of 12 % in E. coli dataset and 70 % in Yeast dataset as well as relatively lesser run times. In contrast, de Bruijn graph based assemblers Velvet and ABySS generated the assemblies of moderate quality, in less time when there is no limitation on the memory allocation, while greedy extension based algorithm SSAKE generated an assembly of very poor quality but with genome coverage of 90 % on yeast dataset. OLC can be considered as a favorable algorithmic framework for the development of assembler tools for Nanopore-based data, followed by de Bruijn based algorithms as they consume relatively less or similar run times as OLC-based algorithms for generating assembly, irrespective of the memory allocated for the task. However, few improvements must be made to the existing de Bruijn implementations in order to generate an assembly with reasonable quality. Our findings should help in stimulating the development of novel assemblers for handling Nanopore sequence data.

收起

展开

DOI:

10.1186/s12864-016-2895-8

被引量:

8

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(1474)

参考文献(34)

引证文献(8)

来源期刊

BMC GENOMICS

影响因子:4.542

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读