Increasing linseed supply in dairy cow diets based on hay or corn silage: Effect on enteric methane emission, rumen microbial fermentation, and digestion.

来自 PUBMED

作者:

Martin CFerlay AMosoni PRochette YChilliard YDoreau M

展开

摘要:

We investigated the effects of increasing extruded linseed supply in diets based on hay (H; experiment 1) or corn silage (CS; experiment 2) on enteric methane (CH4) emission, rumen microbial and fermentation parameters, and rumen and total-tract digestibility. In each experiment, 4 lactating Holstein cows fitted with cannulas at the rumen and proximal duodenum were used in a 4×4 Latin square design (28-d periods). Cows were fed ad libitum a diet [50:50 and 60:40 forage:concentrate on a dry matter (DM) basis for experiments 1 and 2, respectively] without supplementation (H0, CS0) or supplemented with extruded linseed at 5% (H5, CS5), 10% (H10, CS10), and 15% (H15, CS15) of dietary DM (i.e., 1.8, 3.6 and 5.4% total fatty acids added, respectively). All measurements were carried out during the last 8 d of each period. Linseed supply linearly decreased daily CH4 emission in cows fed H diets (from 486 to 289g/d for H0 to H15, on average) and CS diets (from 354 to 207g/d for CS0 to CS15, on average). The average decrease in CH4 per kilogram of DM intake was, respectively, -7, -15, and -38% for H5, H10, H15 compared with the H0 diet, and -4, -8, and -34% for CS5, CS10, and CS15 compared with the CS0 diet. The same dose-response effect was observed on CH4 emission in percent of gross energy intake, per kilogram of nutrient digested, and per kilogram of 4% fat- and 3.3% protein-corrected milk (FPCM) in both experiments. Changes in the composition of rumen volatile fatty acids in response to increasing linseed supply resulted in a moderate or marked linear decrease in acetate:propionate ratio for H or CS diets, respectively. The depressive effect of linseed on total protozoa concentration was linear for H diets (-15 to -40%, on average, for H5 to H15 compared with H0) and quadratic for CS diets (-17 to -83%, on average, for CS5 to CS15 compared with CS0). Concentration of methanogens was similar among H or CS diets. The energetic benefits from the decreased CH4 emission with linseed supply in diets based on hay or corn silage did not improve digestibility or milk yield. Milk efficiency (kg of FPCM/kg of DM intake) was improved with linseed supply up to H10 in H diets and was unchanged in CS diets. Lower CH4 enteric emission from dairy cows fed linseed helps limit the environmental footprint of ruminant livestock.

收起

展开

DOI:

10.3168/jds.2015-10110

被引量:

22

年份:

2016

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(1309)

参考文献(0)

引证文献(22)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读