-
Linseed oil supplementation to dairy cows fed diets based on red clover silage or corn silage: Effects on methane production, rumen fermentation, nutrient digestibility, N balance, and milk production.
The objective of this study was to examine the effect of linseed oil (LO) supplementation to red clover silage (RCS)- or corn silage (CS)-based diets on enteric CH4 emissions, ruminal fermentation characteristics, nutrient digestibility, N balance, and milk production. Twelve rumen-cannulated lactating cows were used in a replicated 4×4 Latin square design (35-d periods) with a 2×2 factorial arrangement of treatments. Cows were fed (ad libitum) RCS- or CS-based diets [forage:concentrate ratio 60:40; dry matter (DM) basis] without or with LO (4% of DM). Supplementation of LO to the RCS-based diet reduced enteric CH4 production (-9%) and CH4 energy losses (-11%) with no adverse effects on DM intake, digestion, ruminal fermentation characteristics, protozoa numbers, or milk production. The addition of LO to the CS-based diet caused a greater decrease in CH4 production (-26%) and CH4 energy losses (-23%) but was associated with a reduction in DM intake, total-tract fiber digestibility, protozoa numbers, acetate:propionate ratio, and energy-corrected milk yield. Urinary N excretion (g/d) decreased with LO supplementation to RCS- and CS-based diets, suggesting reduced potential of N2O emissions. Results from this study show that the depressive effect of LO supplementation on enteric CH4 production is more pronounced with the CS- than with the RCS-based diet. However, because of reduced digestibility with the CS-based diet, the reduction in enteric CH4 production may be offset by higher CH4 emissions from manure storage. Thus, the type of forage of the basal diet should be taken into consideration when using fat supplementation as a dietary strategy to reduce enteric CH4 production from dairy cows.
Benchaar C
,Hassanat F
,Martineau R
,Gervais R
... -
《-》
-
Corn silage-based diet supplemented with increasing amounts of linseed oil: Effects on methane production, rumen fermentation, nutrient digestibility, nitrogen utilization, and milk production of dairy cows.
In this study, we assessed the effects of increasing amounts of linseed oil (LSO) in corn silage-based diets on enteric CH4 production, rumen fermentation characteristics, protozoal population, nutrient digestibility, N utilization, and milk production. For this purpose, 12 multiparous lactating Holstein cows (84 ± 28 d in milk; mean ± SD) fitted with ruminal cannula were used in a replicated 4 × 4 Latin square design (35-d period). The cows were fed ad libitum a total mixed ration without supplementation (control) or supplemented [on a dry matter (DM) basis] with LSO at 2% (LSO2), 3% (LSO3) or 4% (LSO4). The forage:concentrate ratio was 61:39 (on DM basis) and was similar among the experimental diets. The forage portion consisted of corn silage (58% diet DM) and timothy hay (3% diet DM). The proportions of soybean meal, corn grain and soybean hulls decreased as the amount of LSO in the diet increased. Daily methane production (g/d) decreased quadratically as the amount of LSO increased in the diet. Increasing LSO dietary supplementation caused a linear decrease in CH4 emissions expressed on either DM intake (DMI) basis (-9, -20, and -28%, for LSO2, LSO3, and LSO4, respectively) or gross energy intake basis (-12, -22, and -31%, for LSO2, LSO3, and LSO4, respectively). At 2 and 3% LSO, the decrease in enteric CH4 emissions occurred without negatively affecting DMI or apparent total-tract digestibility of fiber and without changing protozoa numbers. However, these 2 diets caused a shift in volatile fatty acids pattern toward less acetate and more propionate. The effect of the LSO4 diet on enteric CH4 emissions was associated with a decrease in DMI, fiber apparent-total-tract digestibility, protozoa numbers (total and genera), and an increase in propionate proportion at the expense of acetate and butyrate proportions. Methane emission intensity [g of CH4/kg of energy-corrected milk (ECM)] decreased linearly (up to 28% decrease) with increasing LSO level in the diet. Milk fat yield decreased linearly (up to 19% decrease) with increasing inclusion of LSO in the diet. Milk protein yield increased at 2% or 3% LSO and decreased to the same level as that of the nonsupplemented diet at 4% LSO (quadratic effect). Yield of ECM was unchanged by LSO2 and LSO3 treatments but decreased (-2.8 kg/d) upon supplementation with 4% LSO (quadratic effect). Efficiency of milk production (kg ECM/kg DMI) was unaffected by the 3 levels of LSO. Ruminal NH3 concentration was quadratically affected by LSO supplementation; decreasing only at the highest level of LSO supplementation. The amount (g/d) of N excreted in feces and urine decreased linearly and quadratically, respectively, as the amount of LSO increased in the diet, mainly because of the reduction in N intake. Efficiency of dietary N used for milk N secretion increased linearly with increasing LSO supplementation in the diet. We conclude that supplementing corn silage-based diets with 2 or 3% of LSO can reduce enteric CH4 emissions up by to 20% without impairing animal productivity (i.e., ECM yield and feed efficiency).
Hassanat F
,Benchaar C
《-》
-
Replacing alfalfa silage with corn silage in dairy cow diets: Effects on enteric methane production, ruminal fermentation, digestion, N balance, and milk production.
The objective of this study was to determine the effects of replacing alfalfa silage (AS) with corn silage (CS) in dairy cow total mixed rations (TMR) on enteric CH4 emissions, ruminal fermentation characteristics, apparent total-tract digestibility, N balance, and milk production. Nine ruminally cannulated lactating cows were used in a replicated 3×3 Latin square design (32-d period) and fed (ad libitum) a TMR [forage:concentrate ratio of 60:40; dry matter (DM) basis], with the forage portion consisting of either alfalfa silage (0% CS; 56.4% AS in the TMR), a 50:50 mixture of both silages (50% CS; 28.2% AS and 28.2% CS in the TMR), or corn silage (100% CS; 56.4% CS in the TMR). Increasing the CS proportion (i.e., at the expense of AS) in the diet was achieved by decreasing the corn grain proportion and increasing that of soybean meal. Intake of DM and milk yield increased quadratically, whereas DM digestibility increased linearly as the proportion of CS increased in the diet. Increasing the dietary CS proportion resulted in changes (i.e., lower ruminal pH and acetate:propionate ratio, reduced fiber digestibility, decreased protozoa numbers, and lower milk fat and higher milk protein contents) typical of those observed when cows are fed high-starch diets. A quadratic response in daily CH4 emissions was observed in response to increasing the proportion of CS in the diet (440, 483, and 434 g/d for 0% CS, 50% CS, and 100% CS, respectively). Methane production adjusted for intake of DM, and gross or digestible energy was unaffected in cows fed the 50% CS diet, but decreased in cows fed the 100% CS diet (i.e., quadratic effect). Increasing the CS proportion in the diet at the expense of AS improved N utilization, as reflected by the decreases in ruminal NH3 concentration and manure N excretion, suggesting low potential NH3 and N2O emissions. Results from this study, suggest that total replacement of AS with CS in dairy cow diets offers a means of decreasing CH4 output and N losses. However, the reduction in fiber degradation and the resulting increase in volatile solids content of the manure may lead to increased CH4 emissions from manure storage.
Hassanat F
,Gervais R
,Julien C
,Massé DI
,Lettat A
,Chouinard PY
,Petit HV
,Benchaar C
... -
《-》
-
Methane emissions of manure from dairy cows fed red clover- or corn silage-based diets supplemented with linseed oil.
The objective of this study was to investigate the effects of forage source (red clover silage: RCS vs. corn silage: CS) and diet supplementation with linseed oil (LO) on CH4 emissions of manure from dairy cows. For this purpose, 12 lactating cows were used in a 2 × 2 factorial arrangement of treatments. Cows were fed (ad libitum) RCS- or CS-based diets (forage:concentrate ratio 60:40; dry matter basis) without or with LO addition (4% dry matter). Feces and urine were collected from each cow and mixed with residual sludge obtained from a manure storage structure. Manure was incubated for 17 wk at 20°C under anaerobic conditions (O2-free N2) in 500-mL glass bottles. Methane emissions and changes in chemical composition of the manure were monitored during the entire incubation period. The total amount of feces and urine excreted by cows was not affected by dietary treatments and averaged 6.6 kg/d of volatile solids (VS). Compared with manure from cows fed RCS-based diets, maximum CH4 production potential of manure from cows fed CS-based diets was 54% higher (182 vs. 118 L/kg of VS) throughout the incubation period. Maximum CH4 production potential from manure also increased (by 17%) when cows were fed LO-supplemented diets compared with those fed nonsupplemented diets. Similar to maximum CH4 production potential, VS degraded during incubation (i.e., VS loss) was higher from manure from cows fed CS-based diets versus cows fed RCS-based diets (30.6 vs. 22.5%), and increased (+3 percentage units, on average) with the addition of LO to the diets. Ammonia concentration in manure was higher when cows were fed CS-based diets compared with RCS-based diets, and declined with LO supplementation to CS and RCS diets. It is concluded that both dietary forage source and fat supplementation affect maximum CH4 production potential from manure and this should be taken into account when such dietary options are recommended to mitigate enteric CH4 emissions from dairy cows.
Hassanat F
,Benchaar C
《-》
-
Performance, digestion, nitrogen balance, and emission of manure ammonia, enteric methane, and carbon dioxide in lactating cows fed diets with varying alfalfa silage-to-corn silage ratios.
Two trials were conducted simultaneously to study the effects of varying alfalfa silage (AS) to corn silage (CS) ratio in diets formulated to avoid excess protein or starch on lactating dairy cow performance, digestibility, ruminal parameters, N balance, manure production and composition, and gaseous emissions [carbon dioxide (CO2), methane (CH4), and ammonia-N (NH3-N)]. In trial 1 all measurements, except gas emissions, were conducted on 8 rumen-cannulated cows in replicated 4×4 Latin squares. In trial 2, performance and emissions were measured on 16 cows randomly assigned to 1 of 4 air-flow controlled chambers in a 4×4 Latin square. Dietary treatments were fed as total mixed rations with forage-to-concentrate ratio of 55:45 [dietary dry matter (DM) basis] and AS:CS ratios of 20:80, 40:60, 60:40, and 80:20 (forage DM basis). Measurements were conducted the last 3d of each 21-d period. Treatments did not affect DM intake, DM digestibility, and milk/DM intake. However, responses were quadratic for fat-and-protein-corrected milk, fat, and protein production, which reached predicted maxima for AS:CS ratio of 50:50, 49:51, and 34:66, respectively. Nitrogen use efficiency (milk N/N intake) decreased from 31 to 24g/100g as AS:CS ratio increased from 20:80 to 80:20. Treatments did not alter NH3-N/milk-N but tended to have a quadratic effect on daily NH3-N emission. Treatments had a quadratic effect on daily CH4 emission, which was high compared with current literature; they influenced CH4 emission per unit of neutral detergent fiber (NDF) intake and tended to influence CO2/NDF intake. Ruminal acetate-to-propionate ratio and total-tract NDF digestibility increased linearly with increasing AS:CS ratio. In addition, as AS:CS ratio increased from 20:80 to 80:20, NDF digested increased linearly from 2.16 to 3.24kg/d, but CH4/digested NDF decreased linearly from 270 to 190g/kg. These 2 counterbalancing effects likely contributed to the observed quadratic response in daily CH4 emission, which may have been influenced also by increasing starch with increasing CS in the diet as reflected by the increased ruminal propionate molar proportion. Overall, production performances were greatest for the intermediate AS:CS ratios (40:60 and 60:40), but daily excretion of urine, manure, fecal N, urinary urea N, and urinary N decreased with increasing proportion of CS in the diet, whereas daily CH4 emission was reduced for the 2 extreme AS:CS ratios (20:80 and 80:20). However, the proportion of AS and CS in the diet did not affect CH4/fat-and-protein corrected milk.
Arndt C
,Powell JM
,Aguerre MJ
,Wattiaux MA
... -
《-》