Pulmonary rehabilitation for interstitial lung disease.
Interstitial lung disease (ILD) is characterised by reduced functional capacity, dyspnoea and exercise-induced hypoxia. Pulmonary rehabilitation is often used to improve symptoms, health-related quality of life and functional status in other chronic lung conditions. There is accumulating evidence for comparable effects of pulmonary rehabilitation in people with ILD. However, further information is needed to clarify the long-term benefit and to strengthen the rationale for pulmonary rehabilitation to be incorporated into standard clinical management of people with ILD. This review updates the results reported in 2014.
To determine whether pulmonary rehabilitation in people with ILD has beneficial effects on exercise capacity, symptoms, quality of life and survival compared with no pulmonary rehabilitation in people with ILD. To assess the safety of pulmonary rehabilitation in people with ILD.
We searched CENTRAL, MEDLINE (Ovid), Embase (Ovid), CINAHL (EBSCO) and PEDro from inception to April 2020. We searched the reference lists of relevant studies, international clinical trial registries and respiratory conference abstracts to look for qualifying studies.
We included randomised controlled trials and quasi-randomised controlled trials in which pulmonary rehabilitation was compared with no pulmonary rehabilitation or with other therapy in people with ILD of any origin.
Two review authors independently selected trials for inclusion, extracted data and assessed risk of bias. We contacted study authors to request missing data and information regarding adverse effects. We specified a priori subgroup analyses for participants with idiopathic pulmonary fibrosis (IPF) and participants with severe lung disease (low diffusing capacity or desaturation during exercise). There were insufficient data to perform the prespecified subgroup analysis for type of exercise training modality.
For this update, we included an additional 12 studies resulting in a total of 21 studies. We included 16 studies in the meta-analysis (356 participants undertook pulmonary rehabilitation and 319 were control participants). The mean age of participants ranged from 36 to 72 years and included people with ILD of varying aetiology, sarcoidosis or IPF (with mean transfer factor of carbon dioxide (TLCO) % predicted ranging from 37% to 63%). Most pulmonary rehabilitation programmes were conducted in an outpatient setting, with a small number conducted in home-based, inpatient or tele-rehabilitation settings. The duration of pulmonary rehabilitation ranged from three to 48 weeks. There was a moderate risk of bias due to the absence of outcome assessor blinding and intention-to-treat analyses and the inadequate reporting of randomisation and allocation procedures in 60% of the studies. Pulmonary rehabilitation probably improves the six-minute walk distance (6MWD) with mean difference (MD) of 40.07 metres, 95% confidence interval (CI) 32.70 to 47.44; 585 participants; moderate-certainty evidence). There may be improvements in peak workload (MD 9.04 watts, 95% CI 6.07 to 12.0; 159 participants; low-certainty evidence), peak oxygen consumption (MD 1.28 mL/kg/minute, 95% CI 0.51 to 2.05; 94 participants; low-certainty evidence) and maximum ventilation (MD 7.21 L/minute, 95% CI 4.10 to 10.32; 94 participants; low-certainty evidence). In the subgroup of participants with IPF, there were comparable improvements in 6MWD (MD 37.25 metres, 95% CI 26.16 to 48.33; 278 participants; moderate-certainty evidence), peak workload (MD 9.94 watts, 95% CI 6.39 to 13.49; low-certainty evidence), VO2 (oxygen uptake) peak (MD 1.45 mL/kg/minute, 95% CI 0.51 to 2.40; low-certainty evidence) and maximum ventilation (MD 9.80 L/minute, 95% CI 6.06 to 13.53; 62 participants; low-certainty evidence). The effect of pulmonary rehabilitation on maximum heart rate was uncertain. Pulmonary rehabilitation may reduce dyspnoea in participants with ILD (standardised mean difference (SMD) -0.36, 95% CI -0.58 to -0.14; 348 participants; low-certainty evidence) and in the IPF subgroup (SMD -0.41, 95% CI -0.74 to -0.09; 155 participants; low-certainty evidence). Pulmonary rehabilitation probably improves health-related quality of life: there were improvements in all four domains of the Chronic Respiratory Disease Questionnaire (CRQ) and the St George's Respiratory Questionnaire (SGRQ) for participants with ILD and for the subgroup of people with IPF. The improvement in SGRQ Total score was -9.29 for participants with ILD (95% CI -11.06 to -7.52; 478 participants; moderate-certainty evidence) and -7.91 for participants with IPF (95% CI -10.55 to -5.26; 194 participants; moderate-certainty evidence). Five studies reported longer-term outcomes, with improvements in exercise capacity, dyspnoea and health-related quality of life still evident six to 12 months following the intervention period (6MWD: MD 32.43, 95% CI 15.58 to 49.28; 297 participants; moderate-certainty evidence; dyspnoea: MD -0.29, 95% CI -0.49 to -0.10; 335 participants; SGRQ Total score: MD -4.93, 95% CI -7.81 to -2.06; 240 participants; low-certainty evidence). In the subgroup of participants with IPF, there were improvements at six to 12 months following the intervention for dyspnoea and SGRQ Impact score. The effect of pulmonary rehabilitation on survival at long-term follow-up is uncertain. There were insufficient data to allow examination of the impact of disease severity or exercise training modality. Ten studies provided information on adverse events; however, there were no adverse events reported during rehabilitation. Four studies reported the death of one pulmonary rehabilitation participant; however, all four studies indicated this death was unrelated to the intervention received.
Pulmonary rehabilitation can be performed safely in people with ILD. Pulmonary rehabilitation probably improves functional exercise capacity, dyspnoea and quality of life in the short term, with benefits also probable in IPF. Improvements in functional exercise capacity, dyspnoea and quality of life were sustained longer term. Dyspnoea and quality of life may be sustained in people with IPF. The certainty of evidence was low to moderate, due to inadequate reporting of methods, the lack of outcome assessment blinding and heterogeneity in some results. Further well-designed randomised trials are needed to determine the optimal exercise prescription, and to investigate ways to promote longer-lasting improvements, particularly for people with IPF.
Dowman L
,Hill CJ
,May A
,Holland AE
... -
《Cochrane Database of Systematic Reviews》
Exercise training for bronchiectasis.
Bronchiectasis is characterised by excessive sputum production, chronic cough, and acute exacerbations and is associated with symptoms of dyspnoea and fatigue, which reduce exercise tolerance and impair quality of life. Exercise training in isolation or in conjunction with other interventions is beneficial for people with other respiratory diseases, but its effects in bronchiectasis have not been well established.
To determine effects of exercise training compared to usual care on exercise tolerance (primary outcome), quality of life (primary outcome), incidence of acute exacerbation and hospitalisation, respiratory and mental health symptoms, physical function, mortality, and adverse events in people with stable or acute exacerbation of bronchiectasis.
We identified trials from the Cochrane Airways Specialised Register, ClinicalTrials.gov, and the World Health Organization trials portal, from their inception to October 2020. We reviewed respiratory conference abstracts and reference lists of all primary studies and review articles for additional references.
We included randomised controlled trials in which exercise training of at least four weeks' duration (or eight sessions) was compared to usual care for people with stable bronchiectasis or experiencing an acute exacerbation. Co-interventions with exercise training including education, respiratory muscle training, and airway clearance therapy were permitted if also applied as part of usual care.
Two review authors independently screened and selected trials for inclusion, extracted outcome data, and assessed risk of bias. We contacted study authors for missing data. We calculated mean differences (MDs) using a random-effects model. We used the GRADE approach to assess the certainty of evidence.
We included six studies, two of which were published as abstracts, with a total of 275 participants. Five studies were undertaken with people with clinically stable bronchiectasis, and one pilot study was undertaken post acute exacerbation. All studies included co-interventions such as instructions for airway clearance therapy and/or breathing strategies, provision of an educational booklet, and delivery of educational sessions. The duration of training ranged from six to eight weeks, with a mix of supervised and unsupervised sessions conducted in the outpatient or home setting. No studies of children were included in the review; however we identified two studies as currently ongoing. No data were available regarding physical activity levels or adverse events. For people with stable bronchiectasis, evidence suggests that exercise training compared to usual care improves functional exercise tolerance as measured by the incremental shuttle walk distance, with a mean difference (MD) between groups of 87 metres (95% confidence interval (CI) 43 to 132 metres; 4 studies, 161 participants; low-certainty evidence). Evidence also suggests that exercise training improves six-minute walk distance (6MWD) (MD between groups of 42 metres, 95% CI 22 to 62; 1 study, 76 participants; low-certainty evidence). The magnitude of these observed mean changes appears clinically relevant as they exceed minimal clinically important difference (MCID) thresholds for people with chronic lung disease. Evidence suggests that quality of life improves following exercise training according to St George's Respiratory Questionnaire (SGRQ) total score (MD -9.62 points, 95% CI -15.67 to -3.56 points; 3 studies, 160 participants; low-certainty evidence), which exceeds the MCID of 4 points for this outcome. A reduction in dyspnoea (MD 1.0 points, 95% CI 0.47 to 1.53; 1 study, 76 participants) and fatigue (MD 1.51 points, 95% CI 0.80 to 2.22 points; 1 study, 76 participants) was observed following exercise training according to these domains of the Chronic Respiratory Disease Questionnaire. However, there was no change in cough-related quality of life as measured by the Leicester Cough Questionnaire (LCQ) (MD -0.09 points, 95% CI -0.98 to 0.80 points; 2 studies, 103 participants; moderate-certainty evidence), nor in anxiety or depression. Two studies reported longer-term outcomes up to 12 months after intervention completion; however exercise training did not appear to improve exercise capacity or quality of life more than usual care. Exercise training reduced the number of acute exacerbations of bronchiectasis over 12 months in people with stable bronchiectasis (odds ratio 0.26, 95% CI 0.08 to 0.81; 1 study, 55 participants). After an acute exacerbation of bronchiectasis, data from a single study (N = 27) suggest that exercise training compared to usual care confers little to no effect on exercise capacity (MD 11 metres, 95% CI -27 to 49 metres; low-certainty evidence), SGRQ total score (MD 6.34 points, 95%CI -17.08 to 29.76 points), or LCQ score (MD -0.08 points, 95% CI -0.94 to 0.78 points; low-certainty evidence) and does not reduce the time to first exacerbation (hazard ratio 0.83, 95% CI 0.31 to 2.22).
This review provides low-certainty evidence suggesting improvement in functional exercise capacity and quality of life immediately following exercise training in people with stable bronchiectasis; however the effects of exercise training on cough-related quality of life and psychological symptoms appear to be minimal. Due to inadequate reporting of methods, small study numbers, and variation between study findings, evidence is of very low to moderate certainty. Limited evidence is available to show longer-term effects of exercise training on these outcomes.
Lee AL
,Gordon CS
,Osadnik CR
《Cochrane Database of Systematic Reviews》
Telerehabilitation for chronic respiratory disease.
Pulmonary rehabilitation is a proven, effective intervention for people with chronic respiratory diseases including chronic obstructive pulmonary disease (COPD), interstitial lung disease (ILD) and bronchiectasis. However, relatively few people attend or complete a program, due to factors including a lack of programs, issues associated with travel and transport, and other health issues. Traditionally, pulmonary rehabilitation is delivered in-person on an outpatient basis at a hospital or other healthcare facility (referred to as centre-based pulmonary rehabilitation). Newer, alternative modes of pulmonary rehabilitation delivery include home-based models and the use of telehealth. Telerehabilitation is the delivery of rehabilitation services at a distance, using information and communication technology. To date, there has not been a comprehensive assessment of the clinical efficacy or safety of telerehabilitation, or its ability to improve uptake and access to rehabilitation services, for people with chronic respiratory disease.
To determine the effectiveness and safety of telerehabilitation for people with chronic respiratory disease.
We searched the Cochrane Airways Trials Register, and the Cochrane Central Register of Controlled Trials; six databases including MEDLINE and Embase; and three trials registries, up to 30 November 2020. We checked reference lists of all included studies for additional references, and handsearched relevant respiratory journals and meeting abstracts.
All randomised controlled trials and controlled clinical trials of telerehabilitation for the delivery of pulmonary rehabilitation were eligible for inclusion. The telerehabilitation intervention was required to include exercise training, with at least 50% of the rehabilitation intervention being delivered by telerehabilitation.
We used standard methods recommended by Cochrane. We assessed the risk of bias for all studies, and used the ROBINS-I tool to assess bias in non-randomised controlled clinical trials. We assessed the certainty of evidence with GRADE. Comparisons were telerehabilitation compared to traditional in-person (centre-based) pulmonary rehabilitation, and telerehabilitation compared to no rehabilitation. We analysed studies of telerehabilitation for maintenance rehabilitation separately from trials of telerehabilitation for initial primary pulmonary rehabilitation.
We included a total of 15 studies (32 reports) with 1904 participants, using five different models of telerehabilitation. Almost all (99%) participants had chronic obstructive pulmonary disease (COPD). Three studies were controlled clinical trials. For primary pulmonary rehabilitation, there was probably little or no difference between telerehabilitation and in-person pulmonary rehabilitation for exercise capacity measured as 6-Minute Walking Distance (6MWD) (mean difference (MD) 0.06 metres (m), 95% confidence interval (CI) -10.82 m to 10.94 m; 556 participants; four studies; moderate-certainty evidence). There may also be little or no difference for quality of life measured with the St George's Respiratory Questionnaire (SGRQ) total score (MD -1.26, 95% CI -3.97 to 1.45; 274 participants; two studies; low-certainty evidence), or for breathlessness on the Chronic Respiratory Questionnaire (CRQ) dyspnoea domain score (MD 0.13, 95% CI -0.13 to 0.40; 426 participants; three studies; low-certainty evidence). Participants were more likely to complete a program of telerehabilitation, with a 93% completion rate (95% CI 90% to 96%), compared to a 70% completion rate for in-person rehabilitation. When compared to no rehabilitation control, trials of primary telerehabilitation may increase exercise capacity on 6MWD (MD 22.17 m, 95% CI -38.89 m to 83.23 m; 94 participants; two studies; low-certainty evidence) and may also increase 6MWD when delivered as maintenance rehabilitation (MD 78.1 m, 95% CI 49.6 m to 106.6 m; 209 participants; two studies; low-certainty evidence). No adverse effects of telerehabilitation were noted over and above any reported for in-person rehabilitation or no rehabilitation.
This review suggests that primary pulmonary rehabilitation, or maintenance rehabilitation, delivered via telerehabilitation for people with chronic respiratory disease achieves outcomes similar to those of traditional centre-based pulmonary rehabilitation, with no safety issues identified. However, the certainty of the evidence provided by this review is limited by the small number of studies, of varying telerehabilitation models, with relatively few participants. Future research should consider the clinical effect of telerehabilitation for individuals with chronic respiratory diseases other than COPD, the duration of benefit of telerehabilitation beyond the period of the intervention, and the economic cost of telerehabilitation.
Cox NS
,Dal Corso S
,Hansen H
,McDonald CF
,Hill CJ
,Zanaboni P
,Alison JA
,O'Halloran P
,Macdonald H
,Holland AE
... -
《Cochrane Database of Systematic Reviews》