Pulmonary rehabilitation versus usual care for adults with asthma.
Asthma is a respiratory disease characterised by variable airflow limitation and the presence of respiratory symptoms including wheeze, chest tightness, cough and/or dyspnoea. Exercise training is beneficial for people with asthma; however, the response to conventional models of pulmonary rehabilitation is less clear.
To evaluate, in adults with asthma, the effectiveness of pulmonary rehabilitation compared to usual care on exercise performance, asthma control, and quality of life (co-primary outcomes), incidence of severe asthma exacerbations/hospitalisations, mental health, muscle strength, physical activity levels, inflammatory biomarkers, and adverse events.
We identified studies from the Cochrane Airways Trials Register, Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase, ClinicalTrials.gov, and the World Health Organization International Clinical Trials Registry Platform, from their inception to May 2021, as well as the reference lists of all primary studies and review articles.
We included randomised controlled trials in which pulmonary rehabilitation was compared to usual care in adults with asthma. Pulmonary rehabilitation must have included a minimum of four weeks (or eight sessions) aerobic training and education or self-management. Co-interventions were permitted; however, exercise training alone was not. DATA COLLECTION AND ANALYSIS: Following the use of Cochrane's Screen4Me workflow, two review authors independently screened and selected trials for inclusion, extracted study characteristics and outcome data, and assessed risk of bias using the Cochrane risk of bias tool. We contacted study authors to retrieve missing data. We calculated between-group effects via mean differences (MD) or standardised mean differences (SMD) using a random-effects model. We evaluated the certainty of evidence using GRADE methodology.
We included 10 studies involving 894 participants (range 24 to 412 participants (n = 2 studies involving n > 100, one contributing to meta-analysis), mean age range 27 to 54 years). We identified one ongoing study and three studies awaiting classification. One study was synthesised narratively, and another involved participants specifically with asthma-COPD overlap. Most programmes were outpatient-based, lasting from three to four weeks (inpatient) or eight to 12 weeks (outpatient). Education or self-management components included breathing retraining and relaxation, nutritional advice and psychological counselling. One programme was specifically tailored for people with severe asthma. Pulmonary rehabilitation compared to usual care may increase maximal oxygen uptake (VO2 max) after programme completion, but the evidence is very uncertain for data derived using mL/kg/min (MD between groups of 3.63 mL/kg/min, 95% confidence interval (CI) 1.48 to 5.77; 3 studies; n = 129) and uncertain for data derived from % predicted VO2 max (MD 14.88%, 95% CI 9.66 to 20.1%; 2 studies; n = 60). The evidence is very uncertain about the effects of pulmonary rehabilitation compared to usual care on incremental shuttle walk test distance (MD between groups 74.0 metres, 95% CI 26.4 to 121.4; 1 study; n = 30). Pulmonary rehabilitation may have little to no effect on VO2 max at longer-term follow up (9 to 12 months), but the evidence is very uncertain (MD -0.69 mL/kg/min, 95% CI -4.79 to 3.42; I2 = 49%; 3 studies; n = 66). Pulmonary rehabilitation likely improves functional exercise capacity as measured by 6-minute walk distance, with MD between groups after programme completion of 79.8 metres (95% CI 66.5 to 93.1; 5 studies; n = 529; moderate certainty evidence). This magnitude of mean change exceeds the minimally clinically important difference (MCID) threshold for people with chronic respiratory disease. The evidence is very uncertain about the longer-term effects one year after pulmonary rehabilitation for this outcome (MD 52.29 metres, 95% CI 0.7 to 103.88; 2 studies; n = 42). Pulmonary rehabilitation may result in a small improvement in asthma control compared to usual care as measured by Asthma Control Questionnaire (ACQ), with an MD between groups of -0.46 (95% CI -0.76 to -0.17; 2 studies; n = 93; low certainty evidence); however, data derived from the Asthma Control Test were very uncertain (MD between groups 3.34, 95% CI -2.32 to 9.01; 2 studies; n = 442). The ACQ finding approximates the MCID of 0.5 points. Pulmonary rehabilitation results in little to no difference in asthma control as measured by ACQ at nine to 12 months follow-up (MD 0.09, 95% CI -0.35 to 0.53; 2 studies; n = 48; low certainty evidence). Pulmonary rehabilitation likely results in a large improvement in quality of life as assessed by the St George's Respiratory Questionnaire (SGRQ) total score (MD -18.51, 95% CI -20.77 to -16.25; 2 studies; n = 440; moderate certainty evidence), with this magnitude of change exceeding the MCID. However, pulmonary rehabilitation may have little to no effect on Asthma Quality of Life Questionnaire (AQLQ) total scores, with the evidence being very uncertain (MD 0.87, 95% CI -0.13 to 1.86; 2 studies; n = 442). Longer-term follow-up data suggested improvements in quality of life may occur as measured by SGRQ (MD -13.4, 95% CI -15.93 to -10.88; 2 studies; n = 430) but not AQLQ (MD 0.58, 95% CI -0.23 to 1.38; 2 studies; n = 435); however, the evidence is very uncertain. One study reported no difference between groups in the proportion of participants who experienced an asthma exacerbation during the intervention period. Data from one study suggest adverse events attributable to the intervention are rare. Overall risk of bias was most commonly impacted by performance bias attributed to a lack of participant blinding to knowledge of the intervention. This is inherently challenging to overcome in rehabilitation studies. AUTHORS' CONCLUSIONS: Moderate certainty evidence shows that pulmonary rehabilitation is probably associated with clinically meaningful improvements in functional exercise capacity and quality of life upon programme completion in adults with asthma. The certainty of evidence relating to maximal exercise capacity was very low to low. Pulmonary rehabilitation appears to confer minimal effect on asthma control, although the certainty of evidence is very low to low. Unclear reporting of study methods and small sample sizes limits our certainty in the overall body of evidence, whilst heterogenous study designs and interventions likely contribute to inconsistent findings across clinical outcomes and studies. There remains considerable scope for future research.
Osadnik CR
,Gleeson C
,McDonald VM
,Holland AE
... -
《Cochrane Database of Systematic Reviews》
Integrated disease management interventions for patients with chronic obstructive pulmonary disease.
People with chronic obstructive pulmonary disease (COPD) show considerable variation in symptoms, limitations, and well-being; this often complicates medical care. A multi-disciplinary and multi-component programme that addresses different elements of care could improve quality of life (QoL) and exercise tolerance, while reducing the number of exacerbations.
To compare the effectiveness of integrated disease management (IDM) programmes versus usual care for people with chronic obstructive pulmonary disease (COPD) in terms of health-related quality of life (QoL), exercise tolerance, and exacerbation-related outcomes.
We searched the Cochrane Airways Group Register of Trials, CENTRAL, MEDLINE, Embase, and CINAHL for potentially eligible studies. Searches were current as of September 2020.
Randomised controlled trials (RCTs) that compared IDM programmes for COPD versus usual care were included. Interventions consisted of multi-disciplinary (two or more healthcare providers) and multi-treatment (two or more components) IDM programmes of at least three months' duration.
Two review authors independently assessed trial quality and extracted data. If required, we contacted study authors to request additional data. We performed meta-analyses using random-effects modelling. We carried out sensitivity analyses for the quality of included studies and performed subgroup analyses based on setting, study design, dominant intervention components, and region.
Along with 26 studies included in the 2013 Cochrane Review, we added 26 studies for this update, resulting in 52 studies involving 21,086 participants for inclusion in the meta-analysis. Follow-up periods ranged between 3 and 48 months and were classified as short-term (up to 6 months), medium-term (6 to 15 months), and long-term (longer than 15 months) follow-up. Studies were conducted in 19 different countries. The mean age of included participants was 67 years, and 66% were male. Participants were treated in all types of healthcare settings, including primary (n =15), secondary (n = 22), and tertiary care (n = 5), and combined primary and secondary care (n = 10). Overall, the level of certainty of evidence was moderate to high. We found that IDM probably improves health-related QoL as measured by St. George's Respiratory Questionnaire (SGRQ) total score at medium-term follow-up (mean difference (MD) -3.89, 95% confidence interval (CI) -6.16 to -1.63; 18 RCTs, 4321 participants; moderate-certainty evidence). A comparable effect was observed at short-term follow-up (MD -3.78, 95% CI -6.29 to -1.28; 16 RCTs, 1788 participants). However, the common effect did not exceed the minimum clinically important difference (MCID) of 4 points. There was no significant difference between IDM and control for long-term follow-up and for generic QoL. IDM probably also leads to a large improvement in maximum and functional exercise capacity, as measured by six-minute walking distance (6MWD), at medium-term follow-up (MD 44.69, 95% CI 24.01 to 65.37; 13 studies, 2071 participants; moderate-certainty evidence). The effect exceeded the MCID of 35 metres and was even greater at short-term (MD 52.26, 95% CI 32.39 to 72.74; 17 RCTs, 1390 participants) and long-term (MD 48.83, 95% CI 16.37 to 80.49; 6 RCTs, 7288 participants) follow-up. The number of participants with respiratory-related admissions was reduced from 324 per 1000 participants in the control group to 235 per 1000 participants in the IDM group (odds ratio (OR) 0.64, 95% CI 0.50 to 0.81; 15 RCTs, median follow-up 12 months, 4207 participants; high-certainty evidence). Likewise, IDM probably results in a reduction in emergency department (ED) visits (OR 0.69, 95%CI 0.50 to 0.93; 9 RCTs, median follow-up 12 months, 8791 participants; moderate-certainty evidence), a slight reduction in all-cause hospital admissions (OR 0.75, 95%CI 0.57 to 0.98; 10 RCTs, median follow-up 12 months, 9030 participants; moderate-certainty evidence), and fewer hospital days per person admitted (MD -2.27, 95% CI -3.98 to -0.56; 14 RCTs, median follow-up 12 months, 3563 participants; moderate-certainty evidence). Statistically significant improvement was noted on the Medical Research Council (MRC) Dyspnoea Scale at short- and medium-term follow-up but not at long-term follow-up. No differences between groups were reported for mortality, courses of antibiotics/prednisolone, dyspnoea, and depression and anxiety scores. Subgroup analysis of dominant intervention components and regions of study suggested context- and intervention-specific effects. However, some subgroup analyses were marked by considerable heterogeneity or included few studies. These results should therefore be interpreted with caution.
This review shows that IDM probably results in improvement in disease-specific QoL, exercise capacity, hospital admissions, and hospital days per person. Future research should evaluate which combination of IDM components and which intervention duration are most effective for IDM programmes, and should consider contextual determinants of implementation and treatment effect, including process-related outcomes, long-term follow-up, and cost-effectiveness analyses.
Poot CC
,Meijer E
,Kruis AL
,Smidt N
,Chavannes NH
,Honkoop PJ
... -
《Cochrane Database of Systematic Reviews》