Patients Tested at a Laboratory for Hereditary Cancer Syndromes Show an Overlap for Multiple Syndromes in Their Personal and Familial Cancer Histories.

来自 PUBMED

作者:

Saam JArnell CTheisen AMoyes KMarino IRoundy KMWenstrup RJ

展开

摘要:

Hereditary cancer testing guidelines are based on the premise that the common hereditary cancer syndromes have distinct, recognizable phenotypes. However, many syndromes present with overlapping cancers. The aim of this analysis was to identify the proportion of patients tested for Lynch syndrome (LS) or hereditary breast and ovarian cancer (HBOC) who met testing criteria for the other syndrome. We analyzed a commercial laboratory database of patients tested for LS and HBOC in a clinical setting from 2006 to 2013. Patient cancer histories were analyzed using the 2012 NCCN criteria for LS and the 2013 NCCN criteria for HBOC. In all, 7% of the patients tested for HBOC met criteria for LS testing. The majority of these patients had a family history of colorectal (30.9%) and/or endometrial cancer (22.7%). Conversely, 29.5% of the patients tested for LS met criteria for HBOC testing. In this group, 30.5% of the patients had a personal history of breast cancer, and 12.6% had a personal history of ovarian cancer. Our data demonstrate a substantial phenotypic overlap among patients for multiple common inherited cancer syndromes, which likely complicates diagnosis and test selection. This supports the value of multigene panels to identify pathogenic mutations in the absence of a clinically specific phenotype.

收起

展开

DOI:

10.1159/000437307

被引量:

5

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(309)

参考文献(0)

引证文献(5)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读