Hereditary cancer-associated mutations in women diagnosed with two primary cancers: an opportunity to identify hereditary cancer syndromes after the first cancer diagnosis.

来自 PUBMED

作者:

Saam JMoyes KLandon MWilliams KKaldate RRArnell CWenstrup R

展开

摘要:

Patients with hereditary cancer syndromes are at high risk for a second primary cancer. Early identification of these patients after an initial cancer diagnosis is the key to implementing cancer risk-reducing strategies. A commercial laboratory database was searched for women with a history of both breast and ovarian or colorectal and endometrial cancer who underwent genetic testing for hereditary breast and ovarian cancer (HBOC) or Lynch syndrome (LS). Among women with both breast and ovarian cancer, 22.4% (2,237/9,982) had a BRCA1 or BRCA2 mutation. Among women with both colorectal and ovarian cancer, 28.1% (264/941) had a mutation associated with LS. In 66.6% of BRCA1 or BRCA2 mutation carriers and in 58.3% of LS mutation carriers, >5 years passed between the cancer diagnoses. Of patients with HBOC and LS, 56 and 65.2%, respectively, met the National Comprehensive Cancer Network guidelines for hereditary cancer testing after their initial diagnosis based on their personal cancer history alone. A substantial number of women tested for LS or HBOC after being diagnosed with two successive primary cancers were diagnosed with a hereditary cancer syndrome. In many cases, the time interval between the diagnoses was long enough to allow for the implementation of surveillance and/or prophylactic measures.

收起

展开

DOI:

10.1159/000368836

被引量:

4

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(622)

参考文献(0)

引证文献(4)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读