-
Nutritive value of maize silage in relation to dairy cow performance and milk quality.
Maize silage has become the major forage component in the ration of dairy cows over the last few decades. This review provides information on the mean content and variability in chemical composition, fatty acid (FA) profile and ensiling quality of maize silages, and discusses the major factors which cause these variations. In addition, the effect of the broad range in chemical composition of maize silages on the total tract digestibility of dietary nutrients, milk production and milk composition of dairy cows is quantified and discussed. Finally, the optimum inclusion level of maize silage in the ration of dairy cows for milk production and composition is reviewed. The data showed that the nutritive value of maize silages is highly variable and that most of this variation is caused by large differences in maturity at harvest. Maize silages ensiled at a very early stage (dry matter (DM) < 250 g kg(-1)) were particularly low in starch content and starch/neutral detergent fibre (NDF) ratio, and resulted in a lower DM intake (DMI), milk yield and milk protein content. The DMI, milk yield and milk protein content increased with advancing maturity, reaching an optimum level for maize silages ensiled at DM contents of 300-350 g kg(-1), and then declined slightly at further maturity beyond 350 g kg(-1). The increases in milk (R(2) = 0.599) and protein (R(2) = 0.605) yields with maturity of maize silages were positively related to the increase in starch/NDF ratio of the maize silages. On average, the inclusion of maize silage in grass silage-based diets improved the forage DMI by 2 kg d(-1), milk yield by 1.9 kg d(-1) and milk protein content by 1.2 g kg(-1). Further comparisons showed that, in terms of milk and milk constituent yields, the optimum grass/maize silage ratio depends on the quality of both the grass and maize silages. Replacement of grass silage with maize silage in the ration, as well as an increasing maturity of the maize silages, altered the milk FA profile of the dairy cows, notably, the concentration of the cis-unsaturated FAs, C18:3n-3 and n-3/n-6 ratio decreased in milk fat. Despite variation in nutritive value, maize silage is rich in metabolizable energy and supports higher DMI and milk yield. Harvesting maize silages at a DM content between 300 and 350 g kg(-1) and feeding in combination with grass silage results in a higher milk yield of dairy cows.
Khan NA
,Yu P
,Ali M
,Cone JW
,Hendriks WH
... -
《-》
-
Effect of corn silage harvest maturity and concentrate type on milk fatty acid composition of dairy cows.
The variation in maturity at harvest during grain filling has a major effect on the carbohydrate composition (starch:NDF ratio) and fatty acid (FA) content of corn silages, and can alter the FA composition of milk fat in dairy cows. This study evaluated the effect of silage corn (cv. Atrium) harvested and ensiled at targeted DM contents of 300, 340, 380, and 420 g/kg of fresh weight and fed to dairy cows in combination with a highly degradable carbohydrate (HC) or low-degradable carbohydrate concentrate, on the nutrient intake, milk yield, and composition of milk and milk fat. Sixty-four multiparous Holstein-Friesian dairy cows in their first week of lactation were assigned to the 8 dietary treatments according to a randomized complete block design. The 8 dietary treatments consisted of a factorial combination of the 4 corn silages and the 2 concentrates. Corn silages were offered ad libitum as part of a basal forage mixture, whereas the concentrates were given at the rate of 8.5 kg of DM/cow per day during the 15-wk experimental period. Dry matter, crude protein, and energy intakes did not differ across the corn silages. However, the intake of starch increased, and those of NDF and C18:3n-3 decreased with increasing maturation. Milk yield and composition were not different across the corn silages. Yield (kg/d) of milk, protein, and lactose was higher for low-degradable carbohydrate compared with HC concentrate-fed groups. Increasing maturity of corn silages decreased the content of C18:3n-3 and total n-3 and increased the n-6:n-3 ratio in milk fat. Concentrate type significantly altered the composition of all trans FA, except C18:2 trans-9,12. Inclusion of the HC concentrate in the diets increased the contents of all C18:1 trans isomers, C18:2 cis-9,trans-11, and C18:2 trans-10,cis-12 conjugated linoleic acid in milk fat. Milk fat composition was strongly influenced by the stage of lactation (wk 3 to 10). The content of all even short- and medium-chain FA changed with lactation, except C8:0 and C10:0. The content of C12:0, C14:0, and C16:0 and total saturated FA increased and the content of C18:0, C18:1 cis total, and total cis monounsaturated FA decreased with lactation. Maturity of the corn silages at harvest did not affect the production performance of dairy cows, but resulted in a decreased content of C18:3n-3, total n-3, and an increased n-6:n-3 ratio in the milk fat of dairy cows.
Khan NA
,Tewoldebrhan TA
,Zom RL
,Cone JW
,Hendriks WH
... -
《-》
-
Effects of maturity and harvest season of grass-clover silage and of forage-to-concentrate ratio on milk production of dairy cows.
This study examined the effects of maturity and season of harvest of grass-clover silages and forage:concentrate ratio (FCR) on feed intake, milk production, chewing activity, digestibility, and fecal consistency of Holstein dairy cows. Comparison included 2 cuts in spring season (early and late) and 2 cuts in summer season (early and late) combined with high FCR (80:20; HFCR) and low FCR (50:50; LFCR). The experiment included 24 lactating Holstein cows arranged as 2 repeated 4 × 4 Latin squares with four 21-d periods and included measurements of feed composition, feed intake, milk production and composition, chewing activities, digestibilities, and fecal dry matter (DM) concentration and scoring. Forages were fed as two-thirds grass-clover and one-third corn silage supplemented with either 20 or 50% concentrate. Rations were fed ad libitum as total mixed rations. Early maturity cuts were more digestible than late maturity cuts, which was also reflected in a lower concentration of neutral detergent fiber (NDF) in early maturity cuts, whereas summer cuts had a higher crude protein concentration than spring cuts. Increased maturity decreased the intake of DM and energy, increased NDF intake, and decreased the yield of energy-corrected milk (ECM). Summer cuts increased the ECM yield compared with spring cuts. Milk yield (kg and kilogram of ECM) was numerically higher for cows fed early summer cut, independent of FCR in the ration. Milk protein concentration decreased, or tended to decrease, with maturity. For LFCR, the milk fat concentration increased with maturity resulting in a decreased protein:fat ratio. At HFCR, increased maturity increased the time spent chewing per kilogram of DM. Digestibility of silages was positively correlated with the fecal DM concentration. The DM intake and ECM yield showed no significant response to FCR in the ration, but the milk composition was affected. The LFCR decreased the milk fat percentage and increased the milk protein percentage numerically followed by a higher protein:fat ratio. Total chewing time per kilogram of DM decreased and total chewing time per kilogram of NDF increased with LFCR. This study indicates that silages from summer cuts have a similar value for milk production as do spring cuts, when forage digestibility is taken into account. Moreover, it appears that supplementation of extra concentrate has no effect on ECM production when forages with a high digestibility are fed, and that the physical structural value is adequate even when feeding high digestible forages.
Alstrup L
,Søegaard K
,Weisbjerg MR
《-》
-
Effects of replacing grass silage with forage pearl millet silage on milk yield, nutrient digestion, and ruminal fermentation of lactating dairy cows.
This study investigated the effects of dietary replacement of grass silage (GS) with forage millet silages that were harvested at 2 stages of maturity [i.e., vegetative stage and dough to ripe seed (mature) stage] on milk production, apparent total-tract digestibility, and ruminal fermentation characteristics of dairy cows. Fifteen lactating Holstein cows were used in a replicated 3 × 3 Latin square experiment and fed (ad libitum) a total mixed ration (60:40 forage:concentrate ratio). Dietary treatments included control (GS), vegetative millet silage (EM), and mature millet silage (MM) diets. Experimental silages comprised 24% of dietary dry matter (DM). Soybean meal and slow-release urea were added in millet diets to balance for crude protein (CP). Three additional ruminally fistulated cows were used to determine the effect of treatments on ruminal fermentation and total-tract nutrient utilization. Cows fed the GS diet consumed more DM (22.9 vs. 21.7 ± 1.02 kg/d) and CP (3.3 vs. 3.1 ± 0.19 kg/d), and similar starch (4.9 ± 0.39 kg/d) and neutral detergent fiber (NDF; 8.0 ± 0.27 kg/d) compared with cows fed the MM diet. Replacing the EM diet with the MM diet did not affect DM, NDF, or CP intakes. Cows fed the MM diet produced less milk (26.1 vs. 29.1 ± 0.79 kg/d), energy-corrected milk (28.0 vs.30.5 ± 0.92 kg/d), and 4% fat-corrected milk (26.5 vs. 28.3 ± 0.92 kg/d) yields than cows fed the GS diet. However, cows fed diets with EM and GS produced similar yields of milk, energy-corrected milk, and 4% fat-corrected milk. Feed efficiency (milk yield:DM intake) was greater only for cows fed the GS diet than those fed the MM diet. Milk protein yield and concentration were greater among cows fed the GS diet compared with those fed the EM or MM diets. Milk fat and lactose concentrations were not influenced by diet. However, milk urea N was lower for cows fed the GS diet than for those fed the MM diet. Ruminal NH3-N was greater for cows fed the EM diet than for those fed the GS diet. Total-tract-digestibility of DM (average = 66.1 ± 3.3%), NDF (average = 55.1 ± 2.4%), CP (average = 63.6 ± 4.2%), and gross energy (average = 64.5 ± 2.6%) were not influenced by experimental diets. We concluded that cows fed GS and EM diets had comparable performance, whereas milk yield was significantly reduced with the MM diet, likely because reduced intakes of DM and net energy for lactation.
Brunette T
,Baurhoo B
,Mustafa AF
《-》
-
Effects of forage type, forage to concentrate ratio, and crushed linseed supplementation on milk fatty acid profile in lactating dairy cows.
The effects of an increasing proportion of crushed linseed (CL) in combination with varying forage type (grass or corn silage) and forage to concentrate ratio (F:C), and their interactions on milk fatty acid (FA) profile of high-producing dairy cows was studied using a 3-factor Box-Behnken design. Sixteen Holstein and 20 Swedish Red cows were blocked according to breed, parity, and milk yield, and randomly assigned to 4 groups. Groups were fed different treatment diets formulated from combinations of the 3 main factors each containing 3 levels. Forage type (fraction of total forage dry matter, DM) included 20, 50, and 80% grass silage, with the remainder being corn silage. The F:C (DM basis) were 35:65, 50:50, and 65:35, and CL was supplied at 1, 3, and 5% of diet DM. Starch and neutral detergent fiber content (DM basis) of the treatment diets ranged from 117 to 209 g/kg and 311 to 388 g/kg, respectively. Thirteen treatment diets were formulated according to the Box-Behnken design. During 4 experimental periods of 21 d each, all treatment diets were fed, including a repetition of the center point treatment (50% grass silage, 50:50F:C, 3% CL) during every period. Intake, production performance, and milk FA profile were measured, and response surface equations were derived for these variables. Shifting from 80% grass silage to 80% corn silage in the diet linearly increased dry matter intake (DMI), net energy for lactation (NE(L)) intake, cis-9,cis-12-C18:2 (C18:2n-6) intake, and milk yield, and linearly decreased cis-9,cis-12,cis-15-C18:3 (C18:3n-3) intake and milk fat content. Shifting from a high forage to a high concentrate diet linearly increased DMI, NE(L) intake, C18:2n-6 intake, and milk yield, and decreased milk fat content. Supplementation of CL linearly increased C18:3n-3 intake, but had no effect on DMI, NE(L) intake, milk yield, or milk fat content. Shifting from 80% grass silage to 80% corn silage linearly increased proportions of trans-10-C18:1 and C18:2n-6 in milk fat, whereas the proportions of trans-11,cis-15-C18:2 and C18:3n-3 linearly decreased. Significant interactions between CL supplementation and F:C were found for proportions of trans-10-C18:1, trans-15-C18:1, cis-15-C18:1, trans-11,cis-15-C18:2, and C18:3n-3 in milk fat, with the highest levels achieved when the diet contained 5% CL and a 35:65F:C ratio. The effect of supplementing CL on several milk FA proportions, including C18:2n-6 and C18:3n-3, depends significantly on the F:C ratio and forage type in the basal diet.
Sterk A
,Johansson BE
,Taweel HZ
,Murphy M
,van Vuuren AM
,Hendriks WH
,Dijkstra J
... -
《-》