-
Effect of corn silage harvest maturity and concentrate type on milk fatty acid composition of dairy cows.
The variation in maturity at harvest during grain filling has a major effect on the carbohydrate composition (starch:NDF ratio) and fatty acid (FA) content of corn silages, and can alter the FA composition of milk fat in dairy cows. This study evaluated the effect of silage corn (cv. Atrium) harvested and ensiled at targeted DM contents of 300, 340, 380, and 420 g/kg of fresh weight and fed to dairy cows in combination with a highly degradable carbohydrate (HC) or low-degradable carbohydrate concentrate, on the nutrient intake, milk yield, and composition of milk and milk fat. Sixty-four multiparous Holstein-Friesian dairy cows in their first week of lactation were assigned to the 8 dietary treatments according to a randomized complete block design. The 8 dietary treatments consisted of a factorial combination of the 4 corn silages and the 2 concentrates. Corn silages were offered ad libitum as part of a basal forage mixture, whereas the concentrates were given at the rate of 8.5 kg of DM/cow per day during the 15-wk experimental period. Dry matter, crude protein, and energy intakes did not differ across the corn silages. However, the intake of starch increased, and those of NDF and C18:3n-3 decreased with increasing maturation. Milk yield and composition were not different across the corn silages. Yield (kg/d) of milk, protein, and lactose was higher for low-degradable carbohydrate compared with HC concentrate-fed groups. Increasing maturity of corn silages decreased the content of C18:3n-3 and total n-3 and increased the n-6:n-3 ratio in milk fat. Concentrate type significantly altered the composition of all trans FA, except C18:2 trans-9,12. Inclusion of the HC concentrate in the diets increased the contents of all C18:1 trans isomers, C18:2 cis-9,trans-11, and C18:2 trans-10,cis-12 conjugated linoleic acid in milk fat. Milk fat composition was strongly influenced by the stage of lactation (wk 3 to 10). The content of all even short- and medium-chain FA changed with lactation, except C8:0 and C10:0. The content of C12:0, C14:0, and C16:0 and total saturated FA increased and the content of C18:0, C18:1 cis total, and total cis monounsaturated FA decreased with lactation. Maturity of the corn silages at harvest did not affect the production performance of dairy cows, but resulted in a decreased content of C18:3n-3, total n-3, and an increased n-6:n-3 ratio in the milk fat of dairy cows.
Khan NA
,Tewoldebrhan TA
,Zom RL
,Cone JW
,Hendriks WH
... -
《-》
-
Effects of forage type, forage to concentrate ratio, and crushed linseed supplementation on milk fatty acid profile in lactating dairy cows.
The effects of an increasing proportion of crushed linseed (CL) in combination with varying forage type (grass or corn silage) and forage to concentrate ratio (F:C), and their interactions on milk fatty acid (FA) profile of high-producing dairy cows was studied using a 3-factor Box-Behnken design. Sixteen Holstein and 20 Swedish Red cows were blocked according to breed, parity, and milk yield, and randomly assigned to 4 groups. Groups were fed different treatment diets formulated from combinations of the 3 main factors each containing 3 levels. Forage type (fraction of total forage dry matter, DM) included 20, 50, and 80% grass silage, with the remainder being corn silage. The F:C (DM basis) were 35:65, 50:50, and 65:35, and CL was supplied at 1, 3, and 5% of diet DM. Starch and neutral detergent fiber content (DM basis) of the treatment diets ranged from 117 to 209 g/kg and 311 to 388 g/kg, respectively. Thirteen treatment diets were formulated according to the Box-Behnken design. During 4 experimental periods of 21 d each, all treatment diets were fed, including a repetition of the center point treatment (50% grass silage, 50:50F:C, 3% CL) during every period. Intake, production performance, and milk FA profile were measured, and response surface equations were derived for these variables. Shifting from 80% grass silage to 80% corn silage in the diet linearly increased dry matter intake (DMI), net energy for lactation (NE(L)) intake, cis-9,cis-12-C18:2 (C18:2n-6) intake, and milk yield, and linearly decreased cis-9,cis-12,cis-15-C18:3 (C18:3n-3) intake and milk fat content. Shifting from a high forage to a high concentrate diet linearly increased DMI, NE(L) intake, C18:2n-6 intake, and milk yield, and decreased milk fat content. Supplementation of CL linearly increased C18:3n-3 intake, but had no effect on DMI, NE(L) intake, milk yield, or milk fat content. Shifting from 80% grass silage to 80% corn silage linearly increased proportions of trans-10-C18:1 and C18:2n-6 in milk fat, whereas the proportions of trans-11,cis-15-C18:2 and C18:3n-3 linearly decreased. Significant interactions between CL supplementation and F:C were found for proportions of trans-10-C18:1, trans-15-C18:1, cis-15-C18:1, trans-11,cis-15-C18:2, and C18:3n-3 in milk fat, with the highest levels achieved when the diet contained 5% CL and a 35:65F:C ratio. The effect of supplementing CL on several milk FA proportions, including C18:2n-6 and C18:3n-3, depends significantly on the F:C ratio and forage type in the basal diet.
Sterk A
,Johansson BE
,Taweel HZ
,Murphy M
,van Vuuren AM
,Hendriks WH
,Dijkstra J
... -
《-》
-
Effects of strain of Holstein-Friesian and concentrate supplementation on the fatty acid composition of milk fat of dairy cows grazing pasture in early lactation.
The effect of a grain-based concentrate supplement on fatty acid (FA) intake and concentration of milk FA in early lactation was investigated in grazing dairy cows that differed in their country of origin and in their estimated breeding value for milk yield. It was hypothesized that Holstein-Friesian cows of North American (NA) origin would produce milk lower in milk fat than those of New Zealand (NZ) origin, and that the difference would be associated with lower de novo synthesis of FA. In comparison, increasing the intake of concentrates should have the same effect on the FA composition of the milk from both strains. Fifty-four cows were randomly assigned in a factorial arrangement to treatments including 3 amounts of concentrate daily [0, 3, and 6 kg of dry matter (DM)/cow] and the 2 strains. The barley/steam-flaked corn concentrate contained 3.5% DM FA, with C18:2, C16:0, and C18:1 contributing 48, 18, and 16% of the total FA. The pasture consumed by the cows contained 4.6% DM FA with C18:3, C16:0, and C18:1 contributing 51, 10, and 10% of the FA, respectively. Pasture DM intake decreased linearly with supplementation, but total DM intake was not different between concentrate or strain treatments, averaging 16.2 kg of DM/cow, with cows consuming 720 g of total FA/d. Cows of the NA strain had lesser concentrations of milk fat compared with NZ cows (3.58 vs. 3.95%). Milk fat from the NA cows had lesser concentrations of C6:0, C8:0, C10:0, C12:0, C14:0, and C16:0, and greater concentrations of cis-9 C18:1, C18:2, and cis-9, trans-11 C18:2, than NZ cows. These changes indicated that in milk from NA cows had a lesser concentration of de novo synthesized FA and a greater concentration of FA of dietary origin. Milk fat concentration was not affected by concentrate supplementation. Increasing concentrate intake resulted in linear increases in the concentrations of C10:0, C12:0, C14:0, and C18:2 FA in milk fat, and a linear decrease in the concentration of C4:0 FA. The combination of NA cows fed pasture alone resulted in a FA composition of milk that was potentially most beneficial from a human health perspective; however, this would need to be balanced against other aspects of the productivity of these animals.
Wales WJ
,Kolver ES
,Egan AR
,Roche JR
... -
《-》
-
Effect of monensin and vitamin E on milk production and composition of lactating dairy cows.
Feeding unsaturated oils to lactating dairy cows impair ruminal biohydrogenation (BH) of unsaturated fatty acids (USFA) and increase ruminal outflow of BH intermediates such as trans-10, cis-12 CLA that are considered to be potent inhibitors of milk fat synthesis. Supplementing lactating dairy cow's rations containing plant origin oils with monensin and/or vitamin E may minimise the formation of trans-10 isomers in the rumen, thereby preventing milk fat depression. Therefore, this study was conducted to evaluate the effects of monensin and vitamin E supplementation in the diets of lactating dairy cows containing whole cottonseed, as the main source of FA on feed intake, milk production and composition, milk fatty acid profile, efficiency of nitrogen (N) utilisation, efficiency of net energy (NE) utilisation and nutrients digestibilities. Four multiparous Holstein lactating dairy cows (86±41 days in milk) were assigned to a balanced 4 × 4 Latin square design. Each experimental period lasted 21 days with a 14 days of treatment adaptation and a 7 days of data collection. The control diet was a total mixed ration (TMR) consisted of 430 g/kg forage and 570 g/kg of a concentrate mixture on dry matter (DM) basis. Cows were randomly assigned to one of the four dietary treatments including control diet (C), control diet supplemented with 150 mg of vitamin E/kg of DM (E), control diet supplemented with 24 mg of monensin/kg of DM (M) and control diet supplemented with 150 mg of vitamin E and 24 mg of monensin/kg of DM (EM). Dry matter intake (DMI) ranged from 19.1 to 19.5 kg/d and was similar among the dietary treatments. Dietary supplementation with vitamin E or monensin had no effect on milk production, milk fat, protein and lactose concentrations, efficiency of utilisation of nitrogen and net energy for lactation (NEL ). Digestibility of DM, organic matter (OM), crude protein (CP) and ether extract (EE) was not affected by the dietary treatments. Digestibility of neutral detergent fibre (NDF) was higher in cows fed with the M and EM diets in relation to those fed the C and E diets. The concentrations of C4:0, C6:0, C8:0, C10:0, C12:0, C14:0, C15:0, trans-10-16:1, cis-9-16:1, 17:0, 18:0, trans-11-18:1, cis-9-18:1, cis-9, trans-11 conjugated linoleic acid (CLA), trans-10, cis-12 CLA, and 18:3n-3 FA in milk fat were not affected by the dietary supplementations. While feeding the M diet tended to decrease milk fat concentration of C16:0, the milk fat concentration of C18:2n-6 FA tended to be increased. Dietary supplementation with vitamin E or monensin had no effect on milk fat concentrations of saturated, unsaturated, monounsaturated, polyunsaturated, short chain and long chain FA, but feeding the M diet numerically decreased milk fat concentration of medium chain fatty acids (MCFA). The results showed that vitamin E and/or monensin supplementations did not improve milk fat content and did not minimise the formation of trans-10 FA isomers in the rumen when whole cottonseed was included in the diet as the main source of fatty acids.
Khodamoradi Sh
,Fatahnia F
,Taherpour K
,Pirani V
,Rashidi L
,Azarfar A
... -
《-》
-
Nutritive value of maize silage in relation to dairy cow performance and milk quality.
Maize silage has become the major forage component in the ration of dairy cows over the last few decades. This review provides information on the mean content and variability in chemical composition, fatty acid (FA) profile and ensiling quality of maize silages, and discusses the major factors which cause these variations. In addition, the effect of the broad range in chemical composition of maize silages on the total tract digestibility of dietary nutrients, milk production and milk composition of dairy cows is quantified and discussed. Finally, the optimum inclusion level of maize silage in the ration of dairy cows for milk production and composition is reviewed. The data showed that the nutritive value of maize silages is highly variable and that most of this variation is caused by large differences in maturity at harvest. Maize silages ensiled at a very early stage (dry matter (DM) < 250 g kg(-1)) were particularly low in starch content and starch/neutral detergent fibre (NDF) ratio, and resulted in a lower DM intake (DMI), milk yield and milk protein content. The DMI, milk yield and milk protein content increased with advancing maturity, reaching an optimum level for maize silages ensiled at DM contents of 300-350 g kg(-1), and then declined slightly at further maturity beyond 350 g kg(-1). The increases in milk (R(2) = 0.599) and protein (R(2) = 0.605) yields with maturity of maize silages were positively related to the increase in starch/NDF ratio of the maize silages. On average, the inclusion of maize silage in grass silage-based diets improved the forage DMI by 2 kg d(-1), milk yield by 1.9 kg d(-1) and milk protein content by 1.2 g kg(-1). Further comparisons showed that, in terms of milk and milk constituent yields, the optimum grass/maize silage ratio depends on the quality of both the grass and maize silages. Replacement of grass silage with maize silage in the ration, as well as an increasing maturity of the maize silages, altered the milk FA profile of the dairy cows, notably, the concentration of the cis-unsaturated FAs, C18:3n-3 and n-3/n-6 ratio decreased in milk fat. Despite variation in nutritive value, maize silage is rich in metabolizable energy and supports higher DMI and milk yield. Harvesting maize silages at a DM content between 300 and 350 g kg(-1) and feeding in combination with grass silage results in a higher milk yield of dairy cows.
Khan NA
,Yu P
,Ali M
,Cone JW
,Hendriks WH
... -
《-》