Integrated disease management interventions for patients with chronic obstructive pulmonary disease.
People with chronic obstructive pulmonary disease (COPD) show considerable variation in symptoms, limitations, and well-being; this often complicates medical care. A multi-disciplinary and multi-component programme that addresses different elements of care could improve quality of life (QoL) and exercise tolerance, while reducing the number of exacerbations.
To compare the effectiveness of integrated disease management (IDM) programmes versus usual care for people with chronic obstructive pulmonary disease (COPD) in terms of health-related quality of life (QoL), exercise tolerance, and exacerbation-related outcomes.
We searched the Cochrane Airways Group Register of Trials, CENTRAL, MEDLINE, Embase, and CINAHL for potentially eligible studies. Searches were current as of September 2020.
Randomised controlled trials (RCTs) that compared IDM programmes for COPD versus usual care were included. Interventions consisted of multi-disciplinary (two or more healthcare providers) and multi-treatment (two or more components) IDM programmes of at least three months' duration.
Two review authors independently assessed trial quality and extracted data. If required, we contacted study authors to request additional data. We performed meta-analyses using random-effects modelling. We carried out sensitivity analyses for the quality of included studies and performed subgroup analyses based on setting, study design, dominant intervention components, and region.
Along with 26 studies included in the 2013 Cochrane Review, we added 26 studies for this update, resulting in 52 studies involving 21,086 participants for inclusion in the meta-analysis. Follow-up periods ranged between 3 and 48 months and were classified as short-term (up to 6 months), medium-term (6 to 15 months), and long-term (longer than 15 months) follow-up. Studies were conducted in 19 different countries. The mean age of included participants was 67 years, and 66% were male. Participants were treated in all types of healthcare settings, including primary (n =15), secondary (n = 22), and tertiary care (n = 5), and combined primary and secondary care (n = 10). Overall, the level of certainty of evidence was moderate to high. We found that IDM probably improves health-related QoL as measured by St. George's Respiratory Questionnaire (SGRQ) total score at medium-term follow-up (mean difference (MD) -3.89, 95% confidence interval (CI) -6.16 to -1.63; 18 RCTs, 4321 participants; moderate-certainty evidence). A comparable effect was observed at short-term follow-up (MD -3.78, 95% CI -6.29 to -1.28; 16 RCTs, 1788 participants). However, the common effect did not exceed the minimum clinically important difference (MCID) of 4 points. There was no significant difference between IDM and control for long-term follow-up and for generic QoL. IDM probably also leads to a large improvement in maximum and functional exercise capacity, as measured by six-minute walking distance (6MWD), at medium-term follow-up (MD 44.69, 95% CI 24.01 to 65.37; 13 studies, 2071 participants; moderate-certainty evidence). The effect exceeded the MCID of 35 metres and was even greater at short-term (MD 52.26, 95% CI 32.39 to 72.74; 17 RCTs, 1390 participants) and long-term (MD 48.83, 95% CI 16.37 to 80.49; 6 RCTs, 7288 participants) follow-up. The number of participants with respiratory-related admissions was reduced from 324 per 1000 participants in the control group to 235 per 1000 participants in the IDM group (odds ratio (OR) 0.64, 95% CI 0.50 to 0.81; 15 RCTs, median follow-up 12 months, 4207 participants; high-certainty evidence). Likewise, IDM probably results in a reduction in emergency department (ED) visits (OR 0.69, 95%CI 0.50 to 0.93; 9 RCTs, median follow-up 12 months, 8791 participants; moderate-certainty evidence), a slight reduction in all-cause hospital admissions (OR 0.75, 95%CI 0.57 to 0.98; 10 RCTs, median follow-up 12 months, 9030 participants; moderate-certainty evidence), and fewer hospital days per person admitted (MD -2.27, 95% CI -3.98 to -0.56; 14 RCTs, median follow-up 12 months, 3563 participants; moderate-certainty evidence). Statistically significant improvement was noted on the Medical Research Council (MRC) Dyspnoea Scale at short- and medium-term follow-up but not at long-term follow-up. No differences between groups were reported for mortality, courses of antibiotics/prednisolone, dyspnoea, and depression and anxiety scores. Subgroup analysis of dominant intervention components and regions of study suggested context- and intervention-specific effects. However, some subgroup analyses were marked by considerable heterogeneity or included few studies. These results should therefore be interpreted with caution.
This review shows that IDM probably results in improvement in disease-specific QoL, exercise capacity, hospital admissions, and hospital days per person. Future research should evaluate which combination of IDM components and which intervention duration are most effective for IDM programmes, and should consider contextual determinants of implementation and treatment effect, including process-related outcomes, long-term follow-up, and cost-effectiveness analyses.
Poot CC
,Meijer E
,Kruis AL
,Smidt N
,Chavannes NH
,Honkoop PJ
... -
《Cochrane Database of Systematic Reviews》
Self-management interventions for people with chronic obstructive pulmonary disease.
Self-management interventions help people with chronic obstructive pulmonary disease (COPD) to acquire and practise the skills they need to carry out disease-specific medical regimens, guide changes in health behaviour and provide emotional support to enable them to control their disease. Since the 2014 update of this review, several studies have been published.
Primary objectives To evaluate the effectiveness of COPD self-management interventions compared to usual care in terms of health-related quality of life (HRQoL) and respiratory-related hospital admissions. To evaluate the safety of COPD self-management interventions compared to usual care in terms of respiratory-related mortality and all-cause mortality. Secondary objectives To evaluate the effectiveness of COPD self-management interventions compared to usual care in terms of other health outcomes and healthcare utilisation. To evaluate effective characteristics of COPD self-management interventions.
We searched the Cochrane Airways Trials Register, CENTRAL, MEDLINE, EMBASE, trials registries and the reference lists of included studies up until January 2020.
Randomised controlled trials (RCTs) and cluster-randomised trials (CRTs) published since 1995. To be eligible for inclusion, self-management interventions had to include at least two intervention components and include an iterative process between participant and healthcare provider(s) in which goals were formulated and feedback was given on self-management actions by the participant.
Two review authors independently selected studies for inclusion, assessed trial quality and extracted data. We resolved disagreements by reaching consensus or by involving a third review author. We contacted study authors to obtain additional information and missing outcome data where possible. Primary outcomes were health-related quality of life (HRQoL), number of respiratory-related hospital admissions, respiratory-related mortality, and all-cause mortality. When appropriate, we pooled study results using random-effects modelling meta-analyses.
We included 27 studies involving 6008 participants with COPD. The follow-up time ranged from two-and-a-half to 24 months and the content of the interventions was diverse. Participants' mean age ranged from 57 to 74 years, and the proportion of male participants ranged from 33% to 98%. The post-bronchodilator forced expiratory volume in one second (FEV1) to forced vital capacity (FVC) ratio of participants ranged from 33.6% to 57.0%. The FEV1/FVC ratio is a measure used to diagnose COPD and to determine the severity of the disease. Studies were conducted on four different continents (Europe (n = 15), North America (n = 8), Asia (n = 1), and Oceania (n = 4); with one study conducted in both Europe and Oceania). Self-management interventions likely improve HRQoL, as measured by the St. George's Respiratory Questionnaire (SGRQ) total score (lower score represents better HRQoL) with a mean difference (MD) from usual care of -2.86 points (95% confidence interval (CI) -4.87 to -0.85; 14 studies, 2778 participants; low-quality evidence). The pooled MD of -2.86 did not reach the SGRQ minimal clinically important difference (MCID) of four points. Self-management intervention participants were also at a slightly lower risk for at least one respiratory-related hospital admission (odds ratio (OR) 0.75, 95% CI 0.57 to 0.98; 15 studies, 3263 participants; very low-quality evidence). The number needed to treat to prevent one respiratory-related hospital admission over a mean of 9.75 months' follow-up was 15 (95% CI 8 to 399) for participants with high baseline risk and 26 (95% CI 15 to 677) for participants with low baseline risk. No differences were observed in respiratory-related mortality (risk difference (RD) 0.01, 95% CI -0.02 to 0.04; 8 studies, 1572 participants ; low-quality evidence) and all-cause mortality (RD -0.01, 95% CI -0.03 to 0.01; 24 studies, 5719 participants; low-quality evidence). We graded the evidence to be of 'moderate' to 'very low' quality according to GRADE. All studies had a substantial risk of bias, because of lack of blinding of participants and personnel to the interventions, which is inherently impossible in a self-management intervention. In addition, risk of bias was noticeably increased because of insufficient information regarding a) non-protocol interventions, and b) analyses to estimate the effect of adhering to interventions. Consequently, the highest GRADE evidence score that could be obtained by studies was 'moderate'.
Self-management interventions for people with COPD are associated with improvements in HRQoL, as measured with the SGRQ, and a lower probability of respiratory-related hospital admissions. No excess respiratory-related and all-cause mortality risks were observed, which strengthens the view that COPD self-management interventions are unlikely to cause harm. By using stricter inclusion criteria, we decreased heterogeneity in studies, but also reduced the number of included studies and therefore our capacity to conduct subgroup analyses. Data were therefore still insufficient to reach clear conclusions about effective (intervention) characteristics of COPD self-management interventions. As tailoring of COPD self-management interventions to individuals is desirable, heterogeneity is and will likely remain present in self-management interventions. For future studies, we would urge using only COPD self-management interventions that include iterative interactions between participants and healthcare professionals who are competent using behavioural change techniques (BCTs) to elicit participants' motivation, confidence and competence to positively adapt their health behaviour(s) and develop skills to better manage their disease. In addition, to inform further subgroup and meta-regression analyses and to provide stronger conclusions regarding effective COPD self-management interventions, there is a need for more homogeneity in outcome measures. More attention should be paid to behavioural outcome measures and to providing more detailed, uniform and transparently reported data on self-management intervention components and BCTs. Assessment of outcomes over the long term is also recommended to capture changes in people's behaviour. Finally, information regarding non-protocol interventions as well as analyses to estimate the effect of adhering to interventions should be included to increase the quality of evidence.
Schrijver J
,Lenferink A
,Brusse-Keizer M
,Zwerink M
,van der Valk PD
,van der Palen J
,Effing TW
... -
《Cochrane Database of Systematic Reviews》