Comparative analysis of de novo transcriptome assembly.
摘要:
The fast development of next-generation sequencing technology presents a major computational challenge for data processing and analysis. A fast algorithm, de Bruijn graph has been successfully used for genome DNA de novo assembly; nevertheless, its performance for transcriptome assembly is unclear. In this study, we used both simulated and real RNA-Seq data, from either artificial RNA templates or human transcripts, to evaluate five de novo assemblers, ABySS, Mira, Trinity, Velvet and Oases. Of these assemblers, ABySS, Trinity, Velvet and Oases are all based on de Bruijn graph, and Mira uses an overlap graph algorithm. Various numbers of RNA short reads were selected from the External RNA Control Consortium (ERCC) data and human chromosome 22. A number of statistics were then calculated for the resulting contigs from each assembler. Each experiment was repeated multiple times to obtain the mean statistics and standard error estimate. Trinity had relative good performance for both ERCC and human data, but it may not consistently generate full length transcripts. ABySS was the fastest method but its assembly quality was low. Mira gave a good rate for mapping its contigs onto human chromosome 22, but its computational speed is not satisfactory. Our results suggest that transcript assembly remains a challenge problem for bioinformatics society. Therefore, a novel assembler is in need for assembling transcriptome data generated by next generation sequencing technique.
收起
展开
DOI:
10.1007/s11427-013-4444-x
被引量:
年份:
1970


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(191)
参考文献(20)
引证文献(24)
来源期刊
影响因子:暂无数据
JCR分区: 暂无
中科院分区:暂无