Comparative analysis of de novo transcriptome assembly.

来自 PUBMED

作者:

Clarke KYang YMarsh RXie LZhang KK

展开

摘要:

The fast development of next-generation sequencing technology presents a major computational challenge for data processing and analysis. A fast algorithm, de Bruijn graph has been successfully used for genome DNA de novo assembly; nevertheless, its performance for transcriptome assembly is unclear. In this study, we used both simulated and real RNA-Seq data, from either artificial RNA templates or human transcripts, to evaluate five de novo assemblers, ABySS, Mira, Trinity, Velvet and Oases. Of these assemblers, ABySS, Trinity, Velvet and Oases are all based on de Bruijn graph, and Mira uses an overlap graph algorithm. Various numbers of RNA short reads were selected from the External RNA Control Consortium (ERCC) data and human chromosome 22. A number of statistics were then calculated for the resulting contigs from each assembler. Each experiment was repeated multiple times to obtain the mean statistics and standard error estimate. Trinity had relative good performance for both ERCC and human data, but it may not consistently generate full length transcripts. ABySS was the fastest method but its assembly quality was low. Mira gave a good rate for mapping its contigs onto human chromosome 22, but its computational speed is not satisfactory. Our results suggest that transcript assembly remains a challenge problem for bioinformatics society. Therefore, a novel assembler is in need for assembling transcriptome data generated by next generation sequencing technique.

收起

展开

DOI:

10.1007/s11427-013-4444-x

被引量:

24

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(191)

参考文献(20)

引证文献(24)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读