-
Genetic analysis of beef fatty acid composition predicted by near-infrared spectroscopy.
The aims of this study were 1) to investigate the potential application of near-infrared spectroscopy (NIRS) to predict intramuscular fat (IMF) and fatty acid (FA) composition of individual meat samples, 2) to estimate heritability of IMF and FA NIRS-based predictions, and 3) to assess the statistical relevance of the genetic background of such predictions by using the Bayes factor (BF) procedure. Young Piemontese bulls (n = 1,298) were raised and fattened on 124 farms, and slaughtered at the same commercial abattoir. Intramuscular fat content and FA composition were analyzed on a random subset of 148 samples of minced and homogenized longissimus thoracis muscle. Near-infrared spectroscopy spectra were collected on all samples (n = 1,298) in reflectance mode between 1,100 and 2,498 nm (every 2 nm) using fresh minced meat samples. Calibration models developed from the random subset of 148 samples were used to predict IMF and FA contents of the remaining 1,150 samples. Intramuscular fat content and FA predictions were analyzed under a Bayesian univariate animal linear models, and the statistical relevance of heritability estimates was assessed through BF; the model with polygenic additive effects was favored when BF > 1. In general, satisfactory results (R(2) > 0.60) were obtained for 6 out of the 8 major FA (C14:0, C:16:0, C16:1, C18:0, C18:1n-9 cis/trans, and C18:1n-11 trans), 6 out of the 19 minor FA (C10:0, C12:0, C17:0, C17:1, C18:2 cis-9,trans-11, and C20:2), and the total SFA, MUFA, and PUFA. Bayes factors between models with and without a genetic component provided values greater than 1 for IMF, C14:0, C16:0, C18:1n-9 cis/trans, C17:0, C17:1, C20:2, SFA, MUFA, and PUFA. The greatest BF was reached by C20:2 (BF >10), suggesting strong evidence of genetic determinism, whereas IMF, C18:1n-9 cis/trans, C17:0, C17:1, MUFA, and PUFA showed substantial evidence favoring the numerator model (3.16 < BF < 10). Point estimates of heritabilities for FA predicted by NIRS were low to moderate (0.07 to 0.21). Results support that NIRS is a useful technique to satisfactorily predict some FA of meat. The existence of an important genetic determinism affecting FA profile has been confirmed, suggesting that FA composition of meat can be genetically modified.
Cecchinato A
,De Marchi M
,Penasa M
,Casellas J
,Schiavon S
,Bittante G
... -
《-》
-
Bayes factor analyses of heritability for serum and muscle lipid traits in Duroc pigs.
Concern about pork quality has increased during last decades. Given the influence of fat content and composition on sensorial, nutritional, and technological variables of pork meat, an accurate knowledge about genetic control of pig lipid metabolism is required. This study focused on providing a broad characterization for serum and meat lipid trait heritability estimates in pigs. Analyses were performed on a population of 370 Duroc barrows and measured the additive polygenic background for the serum concentrations of cholesterol, triglyceride, and low- and high-density lipoproteins at 45 and 190 d of age (at slaughter), as well as intramuscular fat, cholesterol content, and C:12 to C:22 fatty acid content in longissimus thoracis et lumborum and gluteus medius muscles at slaughter. These traits were analyzed under Bayesian univariate animal linear models, and the statistical relevance of heritability estimates was evaluated through Bayes factor (BF); the model with polygenic additive effects was favored when BF >1. All serum lipid traits showed relevant genetic determinism, but the BF reached greater values at 190 d of age. Serum lipid traits displayed moderate modal estimates for heritability that ranged from 0.18 to 0.30. On the other hand, the genetic determinism for meat quality traits showed a heterogeneous behavior with large and less-than-1 BF. In general, longissimus thoracis et lumborum and gluteus medius muscles showed a similar pattern, with strong evidence of polygenic additive effects for intramuscular fat and palmitic, stearic, and cis-vaccenic fatty acids content, whereas oleic and muscle cholesterol content showed moderate to weak BF with moderate heritabilities. Similarly, results regarding linoleic, arachidonic, n-3, and n-6 fatty acids suggested a moderate genetic determinism, but only in gluteus medius muscle. For the remaining traits (myristic and palmitoleic fatty acids in both muscles, along with linoleic, arachidonic, n-3, and n-6 fatty acids in the longissimus thoracis et lumborum muscle), no statistical evidence for genetic control was observed in this study. As a whole, these results confirm the complexity of lipid metabolism in pigs.
Casellas J
,Noguera JL
,Reixach J
,Díaz I
,Amills M
,Quintanilla R
... -
《-》
-
On-line prediction of lamb fatty acid composition by visible near infrared spectroscopy.
This study investigated the potential of visible near infrared spectroscopy (Vis-NIRS) to quantify the fatty acid(FA) composition of lamb meat under commercial abattoir conditions. Genetic algorithm based partial least squares (PLS) were used to develop regression models for predicting individual FA and FA groups such as saturated FA (SFA), monounsaturated FA (MUFA) and polyunsaturated FA (PUFA). Overall, the majority of the FA(C14:0, C16:0, C16:1, C17:0, C18:1 c9, C18:1 c11, C18:2 n-6, C18:2 c9 t11 and C18:1 t11), intramuscular fat(IMF) and all FA groups were predicted with an R2(CV), the squared correlation between observed and cross validated predicted values,which ranged between 0.60 and 0.74 and ratio prediction to deviation (RPD) values between 1.60 and 2.24. However the results for the remaining FA (C17:1, C18:0, C18:3 n−3, C20:4, C20:5, C22:5, C22:6) were unsatisfactory (R2= 0.35-0.57, RPD= 0.76-1.49). This indicates that Vis-NIRS could be used as an on-line tool to predict a number of FA.
Pullanagari RR
,Yule IJ
,Agnew M
《-》
-
Online prediction of fatty acid profiles in crossbred Limousin and Aberdeen Angus beef cattle using near infrared reflectance spectroscopy.
The objective of this study was to examine the online use of near infrared reflectance (NIR) spectroscopy to estimate the concentration of individual and groups of fatty acids (FA) as well as intramuscular fat (IMF) in crossbred Aberdeen Angus (AA×) and Limousin (LIM×) cattle. This was achieved by direct application of a fibre-optic probe to the muscle immediately after exposing the meat surface in the abattoir at 48 h post mortem. Samples of M. longissimus thoracis from 88 AA× and 106 LIM× were scanned over the NIR spectral range from 350 to 1800 nm and samples of the M. longissimus lumborum were analysed for IMF content and FA composition. Statistically significant differences (P < 0.001) were observed in most FA between the two breeds studied, with FA concentration being higher in AA× meat mainly. NIR calibrations, tested by cross-validation, showed moderate to high predictability in LIM× meat samples for C16:0, C16:1, C18:0, trans11 C18:1, C18:1, C18:2 n-6, C20:1, cis9, trans11 C18:2, SFA (saturated FA), MUFA (monounsaturated FA), PUFA (polyunsaturated FA) and IMF content with R(2) (SE(CV), mg/100 g muscle) of 0.69 (146), 0.69 (28), 0.71 (62), 0.70 (8.1), 0.76 (192), 0.65 (13), 0.71 (0.9), 0.71 (2.9), 0.68 (235), 0.75 (240), 0.64 (17) and 0.75 (477), respectively. FA such as C14:0, C18:3 n-3, C20:4 n-6, C20:5 n-3, C22:6 n-3, n-6 and n-3 were more difficult to predict by NIR in these LIM× samples (R(2) = 0.12 to 0.62; SECV = 0.5 to 26 mg/100 g muscle). In contrast, NIR showed low predictability for FA in AA× beef samples. In particular for LIM×, the correlations of NIR measurements and several FA in the range from 0.81 to 0.87 indicated that the NIR spectroscopy is a useful online technique for the early, fast and relatively inexpensive estimation of FA composition in the abattoir.
Prieto N
,Ross DW
,Navajas EA
,Richardson RI
,Hyslop JJ
,Simm G
,Roehe R
... -
《-》
-
Genetic parameters for intramuscular fatty acid composition and metabolism in pigs.
The aim of this study was to estimate genetic parameters for pork intramuscular fatty acid (FA) composition and indices for desaturase and elongase activities involved in n-3 and n-6 PUFA metabolism. The LM of 437 slaughter pigs was analyzed for FA composition (expressed as g/100 g of FA). Indices for enzyme activities were calculated from product to precursor FA ratios. Genetic parameters were estimated with single- and multi-trait animal models. The total FA content, reflecting the intramuscular fat content, was either included or not in the model. Results from the models without total FA content showed relatively high heritability estimates, generally above 0.50, for the proportion of the most important MUFA and PUFA, compared with much smaller values for the SFA. When total FA content was included in the models, heritability values decreased (P < 0.001) for most individual FA and for all sums of FA groups, except for C18:0, C18:3n-6, and C18:3n-3. Heritability estimates for the ratios C20:4n-6/C18:2n-6 and C22:6n-3/C18:3n-3, reflecting the overall conversion in the n-6 and n-3 PUFA pathway, respectively, were 0.29 and 0.35, respectively, with total FA content in the model and increased to 0.38 and 0.49, respectively, if total FA content was not in the model. Heritabilities for other more specific indices were of the same order. Genetic correlations between PUFA proportions and indices for enzyme activities with ADG were mostly negative, whereas the correlations with carcass lean meat percentage were mostly positive. It was concluded that there is meaningful genetic variation for long-chain PUFA metabolism that is only partly dependent on the carcass and muscle fat content. This may allow selection for improved FA composition of pork.
Ntawubizi M
,Colman E
,Janssens S
,Raes K
,Buys N
,De Smet S
... -
《-》