Bayes factor analyses of heritability for serum and muscle lipid traits in Duroc pigs.
Concern about pork quality has increased during last decades. Given the influence of fat content and composition on sensorial, nutritional, and technological variables of pork meat, an accurate knowledge about genetic control of pig lipid metabolism is required. This study focused on providing a broad characterization for serum and meat lipid trait heritability estimates in pigs. Analyses were performed on a population of 370 Duroc barrows and measured the additive polygenic background for the serum concentrations of cholesterol, triglyceride, and low- and high-density lipoproteins at 45 and 190 d of age (at slaughter), as well as intramuscular fat, cholesterol content, and C:12 to C:22 fatty acid content in longissimus thoracis et lumborum and gluteus medius muscles at slaughter. These traits were analyzed under Bayesian univariate animal linear models, and the statistical relevance of heritability estimates was evaluated through Bayes factor (BF); the model with polygenic additive effects was favored when BF >1. All serum lipid traits showed relevant genetic determinism, but the BF reached greater values at 190 d of age. Serum lipid traits displayed moderate modal estimates for heritability that ranged from 0.18 to 0.30. On the other hand, the genetic determinism for meat quality traits showed a heterogeneous behavior with large and less-than-1 BF. In general, longissimus thoracis et lumborum and gluteus medius muscles showed a similar pattern, with strong evidence of polygenic additive effects for intramuscular fat and palmitic, stearic, and cis-vaccenic fatty acids content, whereas oleic and muscle cholesterol content showed moderate to weak BF with moderate heritabilities. Similarly, results regarding linoleic, arachidonic, n-3, and n-6 fatty acids suggested a moderate genetic determinism, but only in gluteus medius muscle. For the remaining traits (myristic and palmitoleic fatty acids in both muscles, along with linoleic, arachidonic, n-3, and n-6 fatty acids in the longissimus thoracis et lumborum muscle), no statistical evidence for genetic control was observed in this study. As a whole, these results confirm the complexity of lipid metabolism in pigs.
Casellas J
,Noguera JL
,Reixach J
,Díaz I
,Amills M
,Quintanilla R
... -
《-》
Genetic analysis of beef fatty acid composition predicted by near-infrared spectroscopy.
The aims of this study were 1) to investigate the potential application of near-infrared spectroscopy (NIRS) to predict intramuscular fat (IMF) and fatty acid (FA) composition of individual meat samples, 2) to estimate heritability of IMF and FA NIRS-based predictions, and 3) to assess the statistical relevance of the genetic background of such predictions by using the Bayes factor (BF) procedure. Young Piemontese bulls (n = 1,298) were raised and fattened on 124 farms, and slaughtered at the same commercial abattoir. Intramuscular fat content and FA composition were analyzed on a random subset of 148 samples of minced and homogenized longissimus thoracis muscle. Near-infrared spectroscopy spectra were collected on all samples (n = 1,298) in reflectance mode between 1,100 and 2,498 nm (every 2 nm) using fresh minced meat samples. Calibration models developed from the random subset of 148 samples were used to predict IMF and FA contents of the remaining 1,150 samples. Intramuscular fat content and FA predictions were analyzed under a Bayesian univariate animal linear models, and the statistical relevance of heritability estimates was assessed through BF; the model with polygenic additive effects was favored when BF > 1. In general, satisfactory results (R(2) > 0.60) were obtained for 6 out of the 8 major FA (C14:0, C:16:0, C16:1, C18:0, C18:1n-9 cis/trans, and C18:1n-11 trans), 6 out of the 19 minor FA (C10:0, C12:0, C17:0, C17:1, C18:2 cis-9,trans-11, and C20:2), and the total SFA, MUFA, and PUFA. Bayes factors between models with and without a genetic component provided values greater than 1 for IMF, C14:0, C16:0, C18:1n-9 cis/trans, C17:0, C17:1, C20:2, SFA, MUFA, and PUFA. The greatest BF was reached by C20:2 (BF >10), suggesting strong evidence of genetic determinism, whereas IMF, C18:1n-9 cis/trans, C17:0, C17:1, MUFA, and PUFA showed substantial evidence favoring the numerator model (3.16 < BF < 10). Point estimates of heritabilities for FA predicted by NIRS were low to moderate (0.07 to 0.21). Results support that NIRS is a useful technique to satisfactorily predict some FA of meat. The existence of an important genetic determinism affecting FA profile has been confirmed, suggesting that FA composition of meat can be genetically modified.
Cecchinato A
,De Marchi M
,Penasa M
,Casellas J
,Schiavon S
,Bittante G
... -
《-》
Quantitative trait loci for fatty acid composition in longissimus dorsi and abdominal fat: results from a White Duroc x Erhualian intercross F2 population.
A whole-genome scan was performed on 660 F(2) animals including 250 barrows and 410 gilts in a White Duroc x Erhualian intercross population to detect quantitative trait loci (QTL) for fatty acid composition in the longissimus dorsi muscle and abdominal fat. A total of 153 QTL including 63 genome-wide significant QTL and 90 suggestive effects were identified for the traits measured. Significant effects were mainly evident on pig chromosomes (SSC) 4, 7, 8 and X. No association was detected on SSC3 and 11. In general, the QTL detected in this study showed distinct effects on fatty acid composition in the longissimus muscle and abdominal fat. The QTL for fatty acid composition in abdominal fat did not correspond to those identified previously in backfat and the majority of QTL for the muscle fatty acid composition were mapped to chromosomal regions different from previous studies. Two regions on SSC4 and SSC7 showed significant pleiotropic effects on monounsaturated (MUFA) and polyunsaturated fatty acid (PUFA) in both longissimus muscle and abdominal fat. Another two QTL with significant multi-faceted effects on MUFA and PUFA in the longissimus muscle were found each on SSC8 and SSCX. Chinese Erhualian alleles were associated with increased ratios of MUFA to saturated fatty acid at most of the QTL detected, showing beneficial effect in terms of human health.
Guo T
,Ren J
,Yang K
,Ma J
,Zhang Z
,Huang L
... -
《-》
Genetic parameters for intramuscular fatty acid composition and metabolism in pigs.
The aim of this study was to estimate genetic parameters for pork intramuscular fatty acid (FA) composition and indices for desaturase and elongase activities involved in n-3 and n-6 PUFA metabolism. The LM of 437 slaughter pigs was analyzed for FA composition (expressed as g/100 g of FA). Indices for enzyme activities were calculated from product to precursor FA ratios. Genetic parameters were estimated with single- and multi-trait animal models. The total FA content, reflecting the intramuscular fat content, was either included or not in the model. Results from the models without total FA content showed relatively high heritability estimates, generally above 0.50, for the proportion of the most important MUFA and PUFA, compared with much smaller values for the SFA. When total FA content was included in the models, heritability values decreased (P < 0.001) for most individual FA and for all sums of FA groups, except for C18:0, C18:3n-6, and C18:3n-3. Heritability estimates for the ratios C20:4n-6/C18:2n-6 and C22:6n-3/C18:3n-3, reflecting the overall conversion in the n-6 and n-3 PUFA pathway, respectively, were 0.29 and 0.35, respectively, with total FA content in the model and increased to 0.38 and 0.49, respectively, if total FA content was not in the model. Heritabilities for other more specific indices were of the same order. Genetic correlations between PUFA proportions and indices for enzyme activities with ADG were mostly negative, whereas the correlations with carcass lean meat percentage were mostly positive. It was concluded that there is meaningful genetic variation for long-chain PUFA metabolism that is only partly dependent on the carcass and muscle fat content. This may allow selection for improved FA composition of pork.
Ntawubizi M
,Colman E
,Janssens S
,Raes K
,Buys N
,De Smet S
... -
《-》
Porcine intramuscular fat content and composition are regulated by quantitative trait loci with muscle-specific effects.
Intramuscular fat (IMF) storage is a biological process with a strong impact on nutritional and technological properties of meat and also with relevant consequences on human health. The genetic architecture of IMF content and composition phenotypes has been thoroughly studied in pigs through the identification of QTL and the estimation of genetic parameters. A question that has not been elucidated yet is if the genetic determinants of IMF-related phenotypes are muscle specific or, conversely, have broad effects on the whole skeletal muscle compartment. We have addressed this question by generating lipid QTL maps for 2 muscles with a high commercial value, gluteus medius (GM) and longissimus thoracis et lumborum (LTL), in a Duroc commercial population (n = 350). Our data support a lack of concordance between the GM and LTL QTL maps, suggesting that the effects of polymorphisms influencing IMF, cholesterol, and fatty acid contents are modulated to some extent by complex spatial factors related to muscle location, metabolism, and function. These results have important implications on the implementation of genomic selection schemes aimed to improve the lipid profile of swine meat.
Quintanilla R
,Pena RN
,Gallardo D
,Cánovas A
,Ramírez O
,Díaz I
,Noguera JL
,Amills M
... -
《-》