-
Desulfosporosinus youngiae sp. nov., a spore-forming, sulfate-reducing bacterium isolated from a constructed wetland treating acid mine drainage.
Strain JW/YJL-B18(T), a spore-forming, sulfate-reducing bacterium, was isolated from constructed wetland sediment. Cells were curved rods, 0.7-1.2 mum in diameter and 3-7 mum long. Despite being phylogenetically a member of the Gram-type-positive phylum Firmicutes, cells stained Gram-negative at all growth phases. Strain JW/YJL-B18(T) grew at 8-39 degrees C, with an optimum at 32-35 degrees C and no growth at 4 degrees C or below or at 42 degrees C or above. The pH(25 degrees C) range for growth was 5.7-8.2, with an optimum at pH(25 degrees C) 7.0-7.3, and no growth was detected at or below pH 5.2 or at or above pH 8.4. The salinity range for growth was 0-3 % (NaCl/KCl 9 : 1). Strain JW/YJL-B18(T) utilized as carbon and energy sources beef extract, yeast extract, formate, succinate, lactate, pyruvate, ethanol and toluene. Fumarate, sulfate, sulfite and thiosulfate were reduced in the presence of lactate. Arsenate (V) was not used as an electron acceptor. Strain JW/YJL-B18(T) showed no indication of growth under autotrophic conditions. The predominant cellular fatty acids were C(16 : 1) and C(16 : 0). The genomic DNA G+C content was 36.6 mol% (HPLC). 16S rRNA gene sequence analysis indicated that strain JW/YJL-B18(T) fell into the genus Desulfosporosinus, with Desulfosporosinus auripigmenti OREX-4(T) as its closest neighbour with a validly published name (97.9 % similarity). Based on molecular genetic evidence and physiological and biochemical characters including differences in the DNA G+C content, we propose to place strain JW/YJL-B18(T) (=DSM 17734(T) =ATCC BAA-1261(T)) as the type strain of a novel species, Desulfosporosinus youngiae sp. nov.
Lee YJ
,Romanek CS
,Wiegel J
《international journal of systematic and evolutionary microbiology》
-
Description of Caldanaerobius fijiensis gen. nov., sp. nov., an inulin-degrading, ethanol-producing, thermophilic bacterium from a Fijian hot spring sediment, and reclassification of Thermoanaerobacterium polysaccharolyticum and Thermoanaerobacterium zeae
An obligately anaerobic, spore-forming, Gram-type-positive but Gram-staining-negative thermophilic bacterium, strain JW/YJL-F3(T), was isolated from a Fijian hot spring sediment sample. Cells of strain JW/YJL-F3(T) were straight to slightly curved rods, 0.5-1.2 microm in diameter and 1.5-19 microm long. The temperature range for growth was between 40 and 67 degrees C, with an optimum at 60-63 degrees C. The pH(25 degrees C) range for growth was 4.5-8.4 with an optimum of 6.8. The salinity range for growth was 0-0.5 %. Strain JW/YJL-F3(T) utilized a range of substrates including arabinose, cellobiose, galactose, glucose, inulin, lactose, maltose, mannose, raffinose, ribose, trehalose, xylose and yeast extract as carbon and energy sources. The major fermentation end products from glucose were ethanol, acetate and formate. Strain JW/YJL-F3(T) converted thiosulfate to elemental sulfur, producing sulfur globules. The DNA G+C content was 37.6 mol% as determined by HPLC. Phylogenetic analysis using the 16S rRNA gene sequence indicated that the isolate is distantly related to the clade of the genus Thermoanaerobacterium. However, Thermoanaerobacterium polysaccharolyticum (96.7 % similarity to the type strain) and Thermoanaerobacterium zeae were the closest relatives, forming a separate, well-supported clade together with the novel isolate. Because Thermoanaerobacterium polysaccharolyticum, Thermoanaerobacterium zeae and strain JW/YJL-F3(T) have different features from other Thermoanaerobacterium species, including a higher G+C content and formate production, and are placed distantly from the remaining species of Thermoanaerobacterium (greater than 10 % distance) in the 16S rRNA gene sequence analysis, we propose to place the new isolate JW/YJL-F3(T) and Thermoanaerobacterium polysaccharolyticum and Thermoanaerobacterium zeae into the novel genus Caldanaerobius gen. nov. as Caldanaerobius fijiensis gen. nov., sp. nov. (the type species), Caldanaerobius polysaccharolyticus comb. nov. and Caldanaerobius zeae comb. nov., respectively. The type strain of Caldanaerobius fijiensis is JW/YJL-F3(T) (=ATCC BAA-1278(T) =DSM 17918(T)).
Lee YJ
,Mackie RI
,Cann IK
,Wiegel J
... -
《international journal of systematic and evolutionary microbiology》
-
Thermoanaerobacter uzonensis sp. nov., an anaerobic thermophilic bacterium isolated from a hot spring within the Uzon Caldera, Kamchatka, Far East Russia.
Several strains of heterotrophic, anaerobic thermophilic bacteria were isolated from hot springs of the Uzon Caldera, Kamchatka, Far East Russia. Strain JW/IW010(T) was isolated from a hot spring within the West sector of the Eastern Thermal field, near Pulsating Spring in the Winding Creek area. Cells of strain JW/IW010(T) were straight to slightly curved rods, 0.5 mum in width and variable in length from 2 to 5 mum and occasionally up to 15 mum, and formed oval subterminal spores. Cells stained Gram-negative, but were Gram-type positive. Growth was observed between 32.5 and 69 degrees C with an optimum around 61 degrees C (no growth occurred at or below 30 degrees C, or at or above 72 degrees C). The pH(60 degrees C) range for growth was 4.2-8.9 with an optimum at 7.1 (no growth occurred at or below pH(60 degrees C) 3.9, or at 9.2 or above). The shortest observed doubling-time at pH(60 degrees C) 6.9 and 61 degrees C was 30 min. Strain JW/IW010(T) was chemo-organotrophic; yeast extract, peptone, Casamino acids and tryptone supported growth. Yeast extract was necessary for the utilization of non-proteinaceous substrates, and growth was observed with inulin, cellobiose, maltose, sucrose, glucose, fructose, galactose, mannose, xylose, trehalose, mannitol, pyruvate and crotonate. The G+C content of the genomic DNA of strain JW/IW010(T) was 33.6 mol% (HPLC method). The major phospholipid fatty acids were iso-15 : 0 (53.5 %), 15 : 0 (11.8 %), 16 : 0 (7.3 %), 10-methyl 16 : 0 (7.3 %) and anteiso-15 : 0 (5.3 %). 16S rRNA gene sequence analysis placed strain JW/IW010(T) in the genus Thermoanaerobacter of the family 'Thermoanaerobacteriaceae' (Firmicutes), with Thermoanaerobacter sulfurigignens JW/SL-NZ826(T) (97 % 16S rRNA gene sequence similarity) and Thermoanaerobacter kivui DSM 2030(T) (94.5 %) as the closest phylogenetic relatives with validly published names. The level of DNA-DNA relatedness between strain JW/IW010(T) and Thermoanaerobacter sulfurigignens JW/SL-NZ826(T) was 64 %. Based on the physiological, phylogenetic and genotypic data, strain JW/IW010(T) represents a novel taxon, for which the name Thermoanaerobacter uzonensis sp. nov. is proposed. The type strain is JW/IW010(T) (=ATCC BAA-1464(T)=DSM 18761(T)). The effectively published strain, 1501/60, of 'Clostridium uzonii' [Krivenko, V. V., Vadachloriya, R. M., Chermykh, N. A., Mityushina, L. L. & Krasilnikova, E. N. (1990). Microbiology (English translation of Mikrobiologiia) 59, 741-748] had approximately 88.0 % DNA-DNA relatedness with strain JW/IW010(T) and was included in the novel taxon.
Wagner ID
,Zhao W
,Zhang CL
,Romanek CS
,Rohde M
,Wiegel J
... -
《international journal of systematic and evolutionary microbiology》
-
Caldanaerovirga acetigignens gen. nov., sp. nov., an anaerobic xylanolytic, alkalithermophilic bacterium isolated from Trego Hot Spring, Nevada, USA.
An anaerobic thermophilic bacterium, designated strain JW/SA-NV4(T), was isolated from a xylan-supplemented enrichment culture from Trego hot spring located within the Black Rock Desert (NV, USA). Cells were generally straight or slightly bent rod-shaped, 0.4-0.8 microm in width and 3-6 microm in length during exponential growth. Cells from stationary phase were variable in size and shape, showing curved or bent morphology. Motility was not seen and flagella were not observed in electron micrographs. Sporulation was not observed. Strain JW/SA-NV4(T) stained Gram-negative but is phylogenetically Gram-type positive. Growth occurred at pH(25 degrees C) 6.8-8.8, with optimum growth at pH 8.4; no growth occurred at pH 9.0 or above or at 6.5 or below. With glucose or xylose as the carbon source, strain JW/SA-NV4(T) grew at 44-74 degrees C; no growth occurred at 76 degrees C or above or at 42 degrees C or below. However, the optimum temperature was 62 and 66 degrees C when grown on glucose and xylose, respectively. The shortest doubling time observed with glucose was approximately 4 h, and with xylose approximately 3.4 h. Strain JW/SA-NV4(T) tolerated an atmosphere containing up to 0.1 % O(2); no growth occurred at a gas atmosphere of 0.2 % O(2). Chemo-organotrophic growth occurred with xylose, glucose, mannose, xylan, pyruvate, fructose, ribose, Casamino acids, mannitol, tryptone, peptone, cellobiose and yeast extract. When grown in mineral media containing 1 g yeast extract l(-1) as an electron donor, thiosulfate and sulfur were reduced to sulfide. The G+C content of the DNA was 38.6 mol% (HPLC). 16S rRNA gene sequence analysis placed strain JW/SA-NV4(T) within the order Thermoanaerobacterales and within the Thermoanaerobacterales Incertae Sedis Family III, specifically between taxa classified within the genera Thermosediminibacter and Thermovenabulum. The closest phylogenetic neighbours were Thermosediminibacter oceani JW/IW-1228P(T) (94.2 % 16S rRNA gene sequence similarity) and Thermosediminibacter litoriperuensis JW/YJL-1230-7/2(T) (94.0 %) [Lee, Y.-J., Wagner, I. D., Brice, M. E., Kevbrin, V. V., Mills, G. L., Romanek, C. S. & Wiegel, J. (2005). Extremophiles 9, 375-383]. Based on physiological and genotypic characteristics, strain JW/SA-NV4(T) (=DSM 18802(T)=ATCC BAA-1454(T)) is proposed to represent the type strain of a novel species in a novel genus, Caldanaerovirga acetigignens gen. nov., sp. nov.
Wagner ID
,Ahmed S
,Zhao W
,Zhang CL
,Romanek CS
,Rohde M
,Wiegel J
... -
《international journal of systematic and evolutionary microbiology》
-
Desulfoluna butyratoxydans gen. nov., sp. nov., a novel Gram-negative, butyrate-oxidizing, sulfate-reducing bacterium isolated from an estuarine sediment in Japan.
A strictly anaerobic, mesophilic, sulfate-reducing bacterial strain, designated MSL71T, was isolated from an estuarine sediment from the Sea of Japan bordering the Japanese islands and was characterized phenotypically and phylogenetically. The cells were found to be Gram-negative, motile, non-spore-forming, slightly curved rods. Catalase and oxidase activities were not detected. The optimum NaCl concentration for growth was 2.0 % (w/v), the optimum temperature was 30 degrees C and the optimum pH was 6.3. Strain MSL71T utilized formate, butyrate, pyruvate, lactate, malate, ethanol, propanol, butanol, glycerol and H2 as electron donors for sulfate reduction. The organic electron donors used were incompletely oxidized, mainly to acetate. The strain did not use acetate, propionate, fumarate, succinate, methanol, glycine, alanine, serine, aspartate or glutamate. Sulfite and thiosulfate were used as electron acceptors with lactate as an electron donor, but fumarate was not utilized. Without electron acceptors, pyruvate and malate, but not lactate or fumarate, were fermented. The genomic DNA G+C content was 62.0 mol%. Menaquinone MK-8(H4) was the major respiratory quinone. The major cellular fatty acids were C14 : 0, C16 : 0, C16 : 1 omega 7, C18 : 1 omega 9, C18 : 1 omega 7 and C14 : 0 3-OH. A phylogenetic analysis based on the 16S rRNA gene sequence placed the strain in the class Deltaproteobacteria. The closest recognized relative of strain MSL71T was Desulfofrigus fragile (93.9 % sequence similarity) and the next closest recognized species was Desulfofrigus oceanense (93.5 %). On the basis of the significant differences in the 16S rRNA gene sequence and phenotypic characteristics between strain MSL71T and each of the related species, a novel genus and species, Desulfoluna butyratoxydans gen. nov., sp. nov., are proposed to accommodate strain MSL71T. The type strain is MSL71T (=JCM 14721T=DSM 19427T).
Suzuki D
,Ueki A
,Amaishi A
,Ueki K
... -
《international journal of systematic and evolutionary microbiology》