-
Desulfovibrio marinisediminis sp. nov., a novel sulfate-reducing bacterium isolated from coastal marine sediment via enrichment with Casamino acids.
To obtain amino acid-utilizing sulfate reducers, enrichment culture was carried out with a medium containing Casamino acids and sulfate and inoculated with coastal marine sediment from the eutrophic Tokyo Bay, Japan. A sulfate reducer, designated strain C/L2(T), was isolated from the sulfide-producing enrichment culture after further enrichment with lactate and sulfate by means of the agar shake dilution method. Cells of strain C/L2(T) were vibrio-shaped, Gram-negative, motile rods (0.7-1.0 mum wide and 1.0-3.5 mum long) with single polar flagella. The optimum temperature for its growth was 37 degrees C, the optimum pH was around 7.5 and the optimum NaCl concentration was 20-25 g l(-1). Hydrogen, formate, lactate, pyruvate, fumarate, malate, succinate, ethanol, propanol, glycerol, glycine, alanine, serine, aspartate, Casamino acids, peptone and yeast extract were used as electron donors. Sulfate, sulfite and thiosulfate each served as an electron acceptor, but elemental sulfur, nitrate, fumarate, acrylate and 2,4,6-tribromophenol did not. Disproportionation of thiosulfate was not observed. Desulfoviridin, c-type cytochromes and catalase were present. The major respiratory quinone was MK-6(H(2)). The G+C content of the genomic DNA was 46.2 mol%. Comparisons based on 16S rRNA gene sequences and on dissimilatory sulfite reductase gene sequences clearly showed that strain C/L2(T) belonged to the genus Desulfovibrio: its closest relatives were the uncharacterized Desulfovibrio sp. strain TBP-1 (16S rRNA gene sequence similarity of 99.4 %) and Desulfovibrio acrylicus DSM 10141(T) (16S rRNA gene sequence similarity of 98.7 %). The level of DNA-DNA hybridization with Desulfovibrio acrylicus DSM 10141(T) was 10.3 %. On the basis of the data from this study and the physiological and phylogenetic differences that exist between the isolate and Desulfovibrio acrylicus, strain C/L2(T) represents a novel species of the genus Desulfovibrio, for which the name Desulfovibrio marinisediminis sp. nov. is proposed. The type strain is C/L2(T) (=NBRC [corrected] 101113(T)=JCM 14577(T)=DSM 17456(T)).
Takii S
,Hanada S
,Hase Y
,Tamaki H
,Uyeno Y
,Sekiguchi Y
,Matsuura K
... -
《international journal of systematic and evolutionary microbiology》
-
Desulfovibrio oceani subsp. oceani sp. nov., subsp. nov. and Desulfovibrio oceani subsp. galateae subsp. nov., novel sulfate-reducing bacteria isolated from the oxygen minimum zone off the coast of Peru.
Two deltaproteobacterial sulfate reducers, designated strain I.8.1(T) and I.9.1(T), were isolated from the oxygen minimum zone water column off the coast of Peru at 400 and 500 m water depth. The strains were Gram-negative, vibrio-shaped and motile. Both strains were psychrotolerant, grew optimally at 20 degrees C at pH 7.0-8.0 and at 2.5-3.5% NaCl (w/v). The strains grew by utilizing hydrogen/acetate, C(3-4) fatty acids, amino acids and glycerol as electron acceptors for sulfate reduction. Fumarate, lactate and pyruvate supported fermentative growth. Sulfate, sulfite, thiosulfate and taurin supported growth as electron acceptors. Both strains were catalase-positive and highly oxygen-tolerant, surviving 24 days of exposure to atmospheric concentrations. MK6 was the only respiratory quinone. The most prominent cellular fatty acid was iso-17:1-omega9c (18%) for strain I.8.1(T) and iso-17:0-omega9c (14%) for strain I.9.1(T). The G+C contents of their genomic DNA were 45-46 mol%. Phylogenetic analysis of 16S rRNA and dsrAB gene sequences showed that both strains belong to the genus Desulfovibrio. Desulfovibrio acrylicus DSM 10141(T) and Desulfovibrio marinisediminis JCM 14577(T) represented their closest validly described relatives with pairwise 16S rRNA gene sequence identities of 98-99%. The level of DNA-DNA hybridization between strains I.8.1(T) and I.9.1(T) was 30-38%. The two strains shared 10-26% DNA-DNA relatedness with D. acrylicus. Based on a polyphasic investigation it is proposed that strains I.8.1(T) and I.9.1(T) represent a novel species for which the name Desulfovibrio oceani sp. nov. is proposed with the two subspecies D. oceani subsp. oceani (type strain, I.8.1(T) = DSM 21390(T) = JCM 15970(T)) and D. oceani subsp. galateae (type strain, I.9.1(T) = DSM 21391(T) = JCM 15971(T)).
Finster KW
,Kjeldsen KU
《-》
-
Desulfovibrio tunisiensis sp. nov., a novel weakly halotolerant, sulfate-reducing bacterium isolated from exhaust water of a Tunisian oil refinery.
A novel weakly halotolerant, sulfate-reducing bacterium, designated strain RB22(T), was isolated from exhaust water of a Tunisian oil refinery. Cells of strain RB22(T) were Gram-negative, motile, vibrio-shaped or sigmoid and non-spore-forming, and occurred singly or in chains. Strain RB22(T) grew between 15 and 45 degrees C (optimum, 37 degrees C) and at pH 4.5 to 9 (optimum, pH 7). NaCl was not required for growth, but the strain tolerated high NaCl concentrations (up to 70 g l(-1)) with an optimum of 40 g l(-1). Sulfate, thiosulfate, sulfite and elemental sulfur served as electron acceptors, but not fumarate. Nitrate and nitrite were not reduced. Strain RB22(T) utilized lactate, formate, fumarate, succinate, glycerol, H(2)+CO(2) and methanol as substrates. The DNA G+C content was found to be 59.6 mol%. Phylogenetic analysis based on the 16S rRNA gene revealed that the isolate was a member of the genus Desulfovibrio, with no close relatives at the species level (16S rRNA gene sequence similarity of less than 95 %). Strain RB22(T) exhibited levels of 16S rRNA gene sequence similarity of 94.6 and 94.12 % to the type strains of the closely related species Desulfovibrio aespoeensis and Desulfovibrio dechloracetivorans, respectively. On the basis of genotypic and phylogenetic characteristics, and significant phenotypic differences, we suggest that strain RB22(T) represents a novel species, for which the name Desulfovibrio tunisiensis sp. nov. is proposed. The type strain is RB22(T) (=NCIMB 14400(T)=JCM 15076(T)=DSM 19275(T)).
Ben Ali Gam Z
,Oueslati R
,Abdelkafi S
,Casalot L
,Tholozan JL
,Labat M
... -
《international journal of systematic and evolutionary microbiology》
-
Desulfoluna butyratoxydans gen. nov., sp. nov., a novel Gram-negative, butyrate-oxidizing, sulfate-reducing bacterium isolated from an estuarine sediment in Japan.
A strictly anaerobic, mesophilic, sulfate-reducing bacterial strain, designated MSL71T, was isolated from an estuarine sediment from the Sea of Japan bordering the Japanese islands and was characterized phenotypically and phylogenetically. The cells were found to be Gram-negative, motile, non-spore-forming, slightly curved rods. Catalase and oxidase activities were not detected. The optimum NaCl concentration for growth was 2.0 % (w/v), the optimum temperature was 30 degrees C and the optimum pH was 6.3. Strain MSL71T utilized formate, butyrate, pyruvate, lactate, malate, ethanol, propanol, butanol, glycerol and H2 as electron donors for sulfate reduction. The organic electron donors used were incompletely oxidized, mainly to acetate. The strain did not use acetate, propionate, fumarate, succinate, methanol, glycine, alanine, serine, aspartate or glutamate. Sulfite and thiosulfate were used as electron acceptors with lactate as an electron donor, but fumarate was not utilized. Without electron acceptors, pyruvate and malate, but not lactate or fumarate, were fermented. The genomic DNA G+C content was 62.0 mol%. Menaquinone MK-8(H4) was the major respiratory quinone. The major cellular fatty acids were C14 : 0, C16 : 0, C16 : 1 omega 7, C18 : 1 omega 9, C18 : 1 omega 7 and C14 : 0 3-OH. A phylogenetic analysis based on the 16S rRNA gene sequence placed the strain in the class Deltaproteobacteria. The closest recognized relative of strain MSL71T was Desulfofrigus fragile (93.9 % sequence similarity) and the next closest recognized species was Desulfofrigus oceanense (93.5 %). On the basis of the significant differences in the 16S rRNA gene sequence and phenotypic characteristics between strain MSL71T and each of the related species, a novel genus and species, Desulfoluna butyratoxydans gen. nov., sp. nov., are proposed to accommodate strain MSL71T. The type strain is MSL71T (=JCM 14721T=DSM 19427T).
Suzuki D
,Ueki A
,Amaishi A
,Ueki K
... -
《international journal of systematic and evolutionary microbiology》
-
Fervidicola ferrireducens gen. nov., sp. nov., a thermophilic anaerobic bacterium from geothermal waters of the Great Artesian Basin, Australia.
A strictly anaerobic, thermophilic bacterium, designated strain Y170(T), was isolated from a microbial mat colonizing thermal waters of a run-off channel created by the free-flowing waters of a Great Artesian Basin (GAB) bore well (New Lorne bore; registered number 17263). Cells of strain Y170(T) were slightly curved rods (1.2-12x0.8-1.1 mum) and stained Gram-negative. The strain grew optimally in tryptone-yeast extract-glucose medium at 70 degrees C (temperature range for growth was 55-80 degrees C) and pH 7 (pH range for growth was 5-9). Strain Y170(T) grew poorly on yeast extract as a sole carbon source, but not on tryptone (0.2 %). Yeast extract could not be replaced by tryptone and was obligately required for growth on tryptone, peptone, glucose, fructose, galactose, cellobiose, mannose, sucrose, xylose, mannitol, formate, pyruvate, Casamino acids and threonine. No growth was observed on arabinose, lactose, maltose, raffinose, chitin, xylan, pectin, starch, acetate, benzoate, lactate, propionate, succinate, myo-inositol, ethanol, glycerol, amyl media, aspartate, leucine, glutamate, alanine, arginine, serine and glycine. End products detected from glucose fermentation were acetate, ethanol and presumably CO(2) and H(2). Iron(III), manganese(IV), thiosulfate and elemental sulfur, but not sulfate, sulfite, nitrate or nitrite, were used as electron acceptors in the presence of 0.2 % yeast extract. Iron(III) in the form of amorphous Fe(III) oxhydroxide and Fe(III) citrate was also reduced in the presence of tryptone, peptone and Casamino acids, but not with chitin, xylan, pectin, formate, starch, pyruvate, acetate, benzoate, threonine, lactate, propionate, succinate, inositol, ethanol, glycerol, mannitol, aspartate, leucine, glutamate, alanine, arginine, serine or glycine. Strain Y170(T) was not able to utilize molecular hydrogen and/or carbon dioxide in the presence or absence of iron(III). Chloramphenicol, streptomycin, tetracycline, penicillin and ampicillin and NaCl concentrations greater than 2 % inhibited growth. The G+C content of the DNA was 48+/-1 mol% [sd (n=3); T(m)]. 16S rRNA gene sequence analysis indicated that strain Y170(T) is a member of the family Syntrophomonadaceae, class Clostridia, phylum Firmicutes and was most closely related to members of the genus Thermosediminibacter (mean similarity of 93.6 %). On the basis of the 16S rRNA gene sequence comparisons and physiological characteristics, strain Y170(T) is considered to represent a novel species of a new genus, for which the name Fervidicola ferrireducens gen. nov., sp. nov. is proposed. The type strain is Y170(T) (=KCTC 5610(T)=JCM 15106(T)=DSM 21121(T)).
Ogg CD
,Patel BK
《international journal of systematic and evolutionary microbiology》