-
A new presynchronization system (Double-Ovsynch) increases fertility at first postpartum timed AI in lactating dairy cows.
This study evaluated a novel presynchronization method, using Ovsynch prior to the Ovsynch-timed AI protocol (Double-Ovsynch) compared to Presynch-Ovsynch. Lactating Holstein (n=337) cows, were assigned to two treatment groups: (1) Presynch (n=180), two injections of PGF 14 d apart, followed by the Ovsynch-timed AI protocol 12 d later; (2) Double-Ovsynch (n=157), received GnRH, PGF 7 d later, and GnRH 3 d later, followed by the Ovsynch-timed AI protocol 7 d later. All cows received the same Ovsynch-timed AI protocol: GnRH (G1) at 68+/-3 DIM (mean+/-SEM), PGF 7 d later, GnRH (G2) 56h after PGF, and AI 16 to 20h later. Pregnancy was diagnosed 39-45 d after timed AI. Double-Ovsynch increased the pregnancies per AI (P/AI) compared to Presynch-Ovsynch (49.7% vs 41.7%, P=0.03). Surprisingly, Double-Ovsynch increased P/AI only in primiparous (65.2% vs 45.2%; P=0.02) and not multiparous (37.5% vs 39.3%) cows. In a subset of 87 cows, ovarian ultrasonography and progesterone (P4) measurements were performed at G1 and 7 d later. Double-Ovsynch decreased the percentage of cows with low P4 (<1ng/mL) at G1 (9.4% vs 33.3%) and increased the percentage of cows with high P4 (> or =3ng/mL) at PGF (78.1% vs 52.3%). Thus, presynchronization of cows with Double-Ovsynch increased fertility in primiparous cows compared to a standard Presynch protocol, perhaps due to induction of ovulation in non-cycling cows and improved synchronization of cycling cows. Future studies are needed, with a larger number of cows, to further test the hypothesis of higher fertility with Double-Ovsynch, and to elucidate the physiological mechanisms that underlie apparent changes in fertility with this protocol.
Souza AH
,Ayres H
,Ferreira RM
,Wiltbank MC
... -
《THERIOGENOLOGY》
-
Double-Ovsynch in high-producing dairy cows: effects on progesterone concentrations and ovulation to GnRH treatments.
Previous studies reported increased fertility using Ovsynch for presynchronization before Ovsynch (Double-Ovsynch), as compared with presynchronization with two prostaglandin F(2α) (PGF(2α)) treatments before Ovsynch (Presynch-Ovsynch). This study compared ovarian follicular dynamics and hormone concentrations during Double-Ovsynch versus Presynch-Ovsynch. Lactating Holstein cows (N = 193) were assigned to one of two treatment groups: (1) Presynch (N = 93), two injections of PGF(2α) 14 days apart, followed by the Ovsynch-timed AI protocol 12 days later; and (2) Double-Ovsynch (N = 100), one injection of GnRH, PGF(2α) 7 days later, and GnRH 3 days later, followed by the Ovsynch-timed AI protocol 7 days later. All cows received the same Ovsynch-timed AI protocol: GnRH (G1) at 68 ± 3 days in milk (mean ± SEM), PGF(2α) 7 days later, and GnRH (G2) 56 hours after PGF(2α). Ultrasonographic evaluations of the ovaries and blood sampling were performed at G1, PGF(2α), G2, and 6 days after the G2 injection of the Ovsynch-timed AI protocol. Double-Ovsynch decreased the percentage of cows with low circulating progesterone (P4) concentrations (<0.50 ng/mL) at G1 (12.0% vs. 30.1%; P = 0.003) and increased the percentage of cows with medium P4 concentrations (0.50 > P4 ≤ 3.0 ng/mL) at G1 (80.0% vs. 57.0%; P < 0.01), and with CL at G1 (94.0% vs. 67.8%; P < 0.01). Double-Ovsynch also increased the percentage of cows with high P4 (>3.0 ng/mL) at PGF(2α) (88.0% vs. 76.3%; P = 0.04) and tended to increase average circulating P4 at PGF(2α) (3.52 ± 0.17 ng/mL vs. 3.09 ± 0.21 ng/mL; P = 0.11). Double-Ovsynch also tended to increase percentage of cows ovulating to G1 (80.0% vs. 69.9%; P = 0.11) and G2 (98.0% vs. 93.5%; P = 0.08). Thus, presynchronization of cows with Double-Ovsynch induced ovulation in noncycling cows and appeared to increase most aspects of synchronization during the Ovsynch protocol.
Ayres H
,Ferreira RM
,Cunha AP
,Araújo RR
,Wiltbank MC
... -
《-》
-
A modified presynchronization protocol improves fertility to timed artificial insemination in lactating dairy cows.
To compare 2 hormonal protocols for submission of lactating dairy cows for timed artificial insemination (TAI), nonpregnant lactating Holstein cows (n = 269) >60 d in milk were randomly assigned to each of 2 treatments to receive TAI (TAI = d 0). Cows assigned to the first treatment (Ovsynch, n = 134) received 50 microg of GnRH (d -10), 25 mg of PGF2alpha (d -3), and 50 microg of GnRH (d -1) beginning at a random stage of the estrous cycle. Cows assigned to the second treatment (Presynch, n = 135) received Ovsynch but with the addition of 2 PGF2alpha (25 mg) injections administered 14 d apart beginning 28 d (d -38 and -24) before initiation of Ovsynch. All cows received TAI 16 to 18 h after the second GnRH injection. Ovulatory response after each GnRH injection for a subset of cows (n = 109) and pregnancy status 42 d after TAI for all cows were assessed using transrectal ultrasonography. Based on serum progesterone (P4) profiles determined for a subset of cows (n = 109), P4 concentrations decreased for Presynch cows after the first 2 PGF2alpha injections, and Presynch cows had greater P4 concentrations at the PGF2alpha injection on d -3 compared with Ovsynch cows. Although the proportion of cows ovulating after the first and second GnRH injections did not differ statistically between treatments (41.1 and 69.6% vs. 35.9 and 81.1% for Ovsynch vs. Presynch, respectively), pregnancy rate per artificial insemination (PR/AI) at 42 d post TAI was greater for Presynch than for Ovsynch cows (49.6 vs. 37.3%). Parity, DIM, and body condition score (BCS) at TAI did not affect PR/AI to TAI. These data support use of this presynchronization protocol to increase PR/ AI of lactating dairy cows receiving TAI compared with Ovsynch.
Navanukraw C
,Redmer DA
,Reynolds LP
,Kirsch JD
,Grazul-Bilska AT
,Fricke PM
... -
《JOURNAL OF DAIRY SCIENCE》
-
Pregnancy per artificial insemination after presynchronizing estrous cycles with the Presynch-10 protocol or prostaglandin F2α injection followed by gonadotropin-releasing hormone before Ovsynch-56 in 4 dairy herds of lactating dairy cows.
The objective was to determine the effect of 2 presynchronization treatments on first-service pregnancy per artificial insemination (P/AI) in 4 dairy herds during warm and cool seasons of the year. Cows with ear tags ending with even digits at calving were enrolled in Presynch-10 (Presynch-10): two 25-mg injections of PGF2α (i.e., PG-1 and PG-2) 14 d apart. Cows with ear tags ending with odd digits were enrolled in PG-3-G: one 25-mg injection of PG (Pre-PG) 3 d before injection of 100μg of GnRH (Pre-GnRH), with the Pre-PG injection administered at the same time as PG-2 in the Presynch-10 treatment. Ten days after PG-2 or Pre-PG, all cows were enrolled in a timed AI protocol (Ovsynch-56; injection of GnRH 7 d before GnRH-1 and 56 h after GnRH-2 PG with AI 16 to 18 h after GnRH-2). Median days in milk (DIM) at scheduled timed AI were 75 d, which did not differ among herds. Cows detected in estrus before the scheduled timed AI were inseminated early (early bred, EB). Pregnancy was diagnosed at d 32 to 38 and at d 60 to 66 after timed AI by transrectal ultrasonography or transrectal palpation. Data were analyzed with herd as a random effect and with fixed effects of treatment (EB, Presynch-10, or PG-3-G), parity (primiparous vs. multiparous), season [hot (June through September) vs. cool-cold (October through May)], DIM, estrus at timed AI (0 vs. 1), and all 2-way interactions with treatment. The P/AI at d 32 to 38 for EB (n=472), Presynch-10 (n=1,247), and PG-3-G (n=1,286) were 31.4, 35.0, and 41.2%, respectively; P/AI at d 60 to 66 was 29.8, 32.2, and 37.3%, respectively. Season significantly influenced P/AI at d 32 to 38 and d 60 to 66, but a treatment by season interaction was not detected. The P/AI for PG-3-G and Presynch-10 treatments did not differ during cool-cold weather (d 32 to 38: 46.8 vs. 44.3%; d 60 to 66: 41.6 vs. 41.1%, respectively), but PG-3-G and Presynch-10 produced more P/AI than EB at d 32 to 38. During the summer, P/AI in PG-3-G was greater than in Presynch-10 (d 32 to 38: 35.9 vs. 26.7% and d 60 to 66: 33.2 vs. 24.4%, respectively), and P/AI in EB cows did not differ from that of Presynch-10 cows. Although pregnancy loss did not differ for EB, Presynch-10, and PG-3-G treatments (4.0, 6.7, and 9.3%, respectively), pregnancy loss from d 32 to 38 and d 60 to 66 was 2-fold greater in thinner cows (<2.5 vs. ≥2.5; 9.0 vs. 4.4%). We concluded that presynchronizing estrous cycles with PG-3-G produced more P/AI than inseminating cows at estrus during cooler weather and was superior to Presynch-10 during the summer.
Stevenson JS
,Pulley SL
《-》
-
Reproductive performance of grazing dairy cows following presynchronization and resynchronization protocols.
Objectives were to compare the effect of presynchronization and resynchronization methods on fertility responses of grazing dairy cows at first and second artificial insemination (AI) and pregnancy rate during the entire breeding season. Lactating dairy cows (n = 1,263) in 2 seasonal grazing farms were blocked, within farm, by parity, breed and days in milk. Within each block, cows were randomly assigned to 1 of 4 treatments arranged as a 2 × 2 factorial with 2 presynchronization and 2 resynchronization treatments. Cows had their estrous cycles presynchronized with either a PGF(2α)-based program (Presynch) consisting of 2 injections of PGF(2α) administered 14 d apart and starting the timed AI protocol 11 d later, or with a PGF(2α)-GnRH-based presynchronization program (G6G) consisting of an injection of PGF(2α), followed 3 d later by an injection of GnRH and starting the timed AI protocol 6 d later. All cows received the first insemination on the same day, which was considered study d 0 and also d 0 of the breeding season. All cows received the 5-d timed AI protocol that consisted of GnRH on d -8, PGF(2α) on d -3 and -2, and GnRH+timed AI on d 0. Blood was sampled and analyzed for progesterone on d -8. On d 12, cows in each presynchronization treatment either remained as untreated controls (RCON) or received a controlled internal drug-release (CIDR) insert containing progesterone for 7 d (RCIDR). Estrus was observed daily starting on d 19 and cows in estrus were inseminated on the same day. On d 35, bulls were placed with the cows for an additional 65 d, completing a 100-d breeding season. Holstein cows were less likely to have progesterone ≥ 1 ng/mL on d -8, and had less expression of estrus and pregnancy per AI (P/AI), which resulted in a slower rate of pregnancy and a smaller proportion of pregnancy at the end of the study than did Jersey or crossbred cows. In addition, body condition, days in milk, and plasma progesterone concentration at the first GnRH injection of the timed AI protocol had marked effects on the reproductive performance of lactating grazing dairy cows. A greater proportion of G6G cows had progesterone ≥ 1 ng/mL at the first GnRH injection of the timed AI protocol compared with Presynch cows (82.0 vs. 74.3%). Presynchronization treatment did not influence P/AI, but cows in G6G had increased risk of pregnancy loss between d 30 and 65 after the first AI (12.9 vs. 8.1%). Nevertheless, an interaction between presynchronization and ovarian status was observed, and cows initiating the timed AI with progesterone ≥ 1 ng/mL had greater P/AI when previously treated with Presynch than G6G. On the other hand, G6G benefited P/AI of cows initiating the timed AI with progesterone < 1 ng/mL. Resynchronization with RCIDR altered the pattern of return to estrus, but it did not increase the rate of re-insemination and decreased the proportion of pregnant cows at the end of the 100-d breeding period (80.6 vs. 84.4%).
Ribeiro ES
,Cerri RL
,Bisinotto RS
,Lima FS
,Silvestre FT
,Greco LF
,Thatcher WW
,Santos JE
... -
《-》