Genetic marker anchoring by six-dimensional pools for development of a soybean physical map.

来自 PUBMED

作者:

Wu XZhong GFindley SDCregan PStacey GNguyen HT

展开

摘要:

Integrated genetic and physical maps are extremely valuable for genomic studies and as important references for assembling whole genome shotgun sequences. Screening of a BAC library using molecular markers is an indispensable procedure for integration of both physical and genetic maps of a genome. Molecular markers provide anchor points for integration of genetic and physical maps and also validate BAC contigs assembled based solely on BAC fingerprints. We employed a six-dimensional BAC pooling strategy and an in silico approach to anchor molecular markers onto the soybean physical map. A total of 1,470 markers (580 SSRs and 890 STSs) were anchored by PCR on a subset of a Williams 82 BstY I BAC library pooled into 208 pools in six dimensions. This resulted in 7,463 clones (approximately 1x genome equivalent) associated with 1470 markers, of which the majority of clones (6,157, 82.5%) were anchored by one marker and 1106 (17.5%) individual clones contained two or more markers. This contributed to 1184 contigs having anchor points through this 6-D pool screening effort. In parallel, the 21,700 soybean Unigene set from NCBI was used to perform in silico mapping on 80,700 Williams 82 BAC end sequences (BES). This in silico analysis yielded 9,835 positive results anchored by 4152 unigenes that contributed to 1305 contigs and 1624 singletons. Among the 1305 contigs, 305 have not been previously anchored by PCR. Therefore, 1489 (78.8%) of 1893 contigs are anchored with molecular markers. These results are being integrated with BAC fingerprints to assemble the BAC contigs. Ultimately, these efforts will lead to an integrated physical and genetic map resource. We demonstrated that the six-dimensional soybean BAC pools can be efficiently used to anchor markers to soybean BACs despite the complexity of the soybean genome. In addition to anchoring markers, the 6-D pooling method was also effective for targeting BAC clones for investigating gene families and duplicated regions in the genome, as well as for extending physical map contigs.

收起

展开

DOI:

10.1186/1471-2164-9-28

被引量:

0

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(162)

参考文献(27)

引证文献(0)

来源期刊

BMC GENOMICS

影响因子:4.542

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读