-
Efficacy and safety of enteric-coated mycophenolate sodium in de novo renal transplant recipients: pooled data from three 12-month multicenter, open-label, prospective studies.
Legendre C
,Cohen D
,Zeier M
,Rostaing L
,Budde K
... -
《TRANSPLANTATION PROCEEDINGS》
-
Safety, pharmacokinetics, and pharmacodynamics of LBP-EC01, a CRISPR-Cas3-enhanced bacteriophage cocktail, in uncomplicated urinary tract infections due to Escherichia coli (ELIMINATE): the randomised, open-label, first part of a two-part phase 2 trial.
The rate of antibiotic resistance continues to grow, outpacing small-molecule-drug development efforts. Novel therapies are needed to combat this growing threat, particularly for the treatment of urinary tract infections (UTIs), which are one of the largest contributors to antibiotic use and associated antibiotic resistance. LBP-EC01 is a novel, genetically enhanced, six-bacteriophage cocktail developed by Locus Biosciences (Morrisville, NC, USA) to address UTIs caused by Escherichia coli, regardless of antibiotic resistance status. In this first part of the two-part phase 2 ELIMINATE trial, we aimed to define a dosing regimen of LBP-EC01 for the treatment of uncomplicated UTIs that could advance to the second, randomised, controlled, double-blinded portion of the study.
This first part of ELIMINATE is a randomised, uncontrolled, open-label, phase 2 trial that took place in six private clinical sites in the USA. Eligible participants were female by self-identification, aged between 18 years and 70 years, and had an uncomplicated UTI at the time of enrolment, as well as a history of at least one drug-resistant UTI caused by E coli within the 12 months before enrolment. Participants were initially randomised in a 1:1:1 ratio into three treatment groups, but this part of the trial was terminated on the recommendation of the safety review committee after a non-serious tolerability signal was observed based on systemic drug exposure. A protocol update was then implemented, comprised of three new treatment groups. Groups A to C were dosed with intraurethral 2 × 1012 plaque-forming units (PFU) of LBP-EC01 on days 1 and 2 by catheter, plus one of three intravenous doses daily on days 1-3 of LBP-EC01 (1 mL of 1 × 1010 PFU intravenous bolus in group A, 1 mL of 1 × 109 PFU intravenous bolus in group B, and a 2 h 1 × 1011 PFU intravenous infusion in 100 mL of sodium lactate solution in group C). In all groups, oral trimethoprim-sulfamethoxazole (TMP-SMX; 160 mg and 800 mg) was given twice daily on days 1-3. The primary outcome was the level of LBP-EC01 in urine and blood across the treatment period and over 48 h after the last dose and was assessed in patients in the intention-to-treat (ITT) population who received at least one dose of LBP-EC01 and had concentration-time data available throughout the days 1-3 dosing period (pharmacokinetic population). Safety, a secondary endpoint, was assessed in enrolled patients who received at least one dose of study drug (safety population). As exploratory pharmacodynamic endpoints, we assessed E coli levels in urine and clinical symptoms of UTI in patients with at least 1·0 × 105 colony-forming units per mL E coli in urine at baseline who took at least one dose of study drug and completed their day 10 test-of-cure assessment (pharmacodynamic-evaluable population). This trial is registered with ClinicalTrials.gov, NCT05488340, and is ongoing.
Between Aug 22, 2022, and Aug 28, 2023, 44 patients were screened for eligibility, and 39 were randomly assigned (ITT population). Initially, eight participants were assigned to the first three groups. After the protocol was updated, 31 participants were allocated into groups A (11 patients), B (ten patients), and C (ten patients). One patient in group C withdrew consent on day 2 for personal reasons, but as she had received the first dose of the study drug was included in the modified ITT population. Maximum urine drug concentrations were consistent across intraurethral dosing, with a maximum mean concentration of 6·3 × 108 PFU per mL (geometric mean 8·8 log10 PFU per mL and geometric SD [gSD] 0·3). Blood plasma level of bacteriophages was intravenous dose-dependent, with maximum mean concentrations of 4·0 × 103 (geometric mean 3·6 log10 PFU per mL [gSD 1·5]) in group A, 2·5 × 103 (3·4 log10 PFU per mL [1·7]) in group B, and 8·0 × 105 (5·9 log10 PFU per mL [1·4]) in group C. No serious adverse events were observed. 44 adverse events were reported across 18 (46%) of the 39 participants in the safety population, with more adverse events seen with higher intravenous doses. Three patients in groups 1 to 3 and one patient in group C, all of whom received 1 × 1011 LBP-EC01 intravenously, had non-serious tachycardia and afebrile chills after the second intravenous dose. A rapid reduction of E coli in urine was observed by 4 h after the first treatment and maintained at day 10 in all 16 evaluable patients; these individuals had complete resolution of UTI symptoms by day 10.
A regimen consisting of 2 days of intraurethral LBP-EC01 and 3 days of concurrent intravenous LBP-EC01 (1 × 1010 PFU) and oral TMP-SMX twice a day was well tolerated, with consistent pharmacokinetic profiles in urine and blood. LBP-EC01 and TMP-SMX dosing resulted in a rapid and durable reduction of E coli, with corresponding elimination of clinical symptoms in evaluable patients. LBP-EC01 holds promise in providing an alternative therapy for uncomplicated UTIs, with further testing of the group A dosing regimen planned in the controlled, double-blind, second part of ELIMINATE.
Federal funds from the US Department of Health and Human Services, Administration for Strategic Preparedness and Response, and Biomedical Advanced Research and Development Authority (BARDA).
Kim P
,Sanchez AM
,Penke TJR
,Tuson HH
,Kime JC
,McKee RW
,Slone WL
,Conley NR
,McMillan LJ
,Prybol CJ
,Garofolo PM
... -
《-》
-
Interventions for BK virus infection in kidney transplant recipients.
BK virus-associated nephropathy (BKVAN), caused by infection with or reactivation of BK virus, remains a challenge in kidney transplantation. Screening is recommended for all kidney transplant recipients. For those with clinically significant infection, reduction of immunosuppression is the cornerstone of management. There is no specific antiviral or immunomodulatory therapy sufficiently effective for routine use.
This review aimed to examine the benefits and harms of interventions for BK virus infection in kidney transplant recipients.
We searched the Cochrane Kidney and Transplant Register of Studies up to 5 September 2024 through contact with the Information Specialist using search terms relevant to this review. Studies in the Register are identified through searches of CENTRAL, MEDLINE, and EMBASE, conference proceedings, the International Clinical Trials Registry Platform (ICTRP) Search Portal and ClinicalTrials.gov.
All randomised controlled trials (RCTs) and cohort studies investigating any intervention for the treatment or prevention of BKVAN for kidney transplant recipients.
Two authors independently assessed the study quality and extracted data. Summary estimates of effect were obtained using a random-effects model, and results were expressed as risk ratios (RR) and their 95% confidence intervals (CI) for dichotomous outcomes and mean difference (MD) and 95% CI for continuous outcomes. Confidence in the evidence was assessed using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach.
Twelve RCTs (2669 randomised participants) were included. Six studies were undertaken in single centres, and six were multicentre studies; two of these were international studies. The ages of those participating ranged from 44 to 57 years. The length of follow-up ranged from three months to five years. All studies included people with a kidney transplant, and three studies included people with signs of BK viraemia. Studies were heterogeneous in terms of the type of interventions and outcomes assessed. The overall risk of bias was low or unclear. Intensive screening for the early detection of BK viraemia or BK viruria prevents graft loss (1 study, 908 participants: RR 0.00, 95% CI 0.00 to 0.05) and decreases the presence of decoy cells and viraemia at 12 months (1 study, 908 participants: RR 0.06, 95% CI 0.03 to 0.11) compared to routine care (high certainty evidence). No other outcomes were reported. Compared to placebo, fluoroquinolones may slightly reduce the risk of graft loss (3 studies, 393 participants: RR 0.37, CI 0.09 to 1.57; I2 = 0%; low certainty evidence), probably makes little or no difference to donor-specific antibodies (DSA), may make little or no difference to BK viraemia and death, had uncertain effects on BKVAN and malignancy, but may increase the risk of tendonitis (2 studies, 193 participants: RR 5.66, CI 1.02 to 31.32; I2 = 0%; low certainty evidence). Compared to tacrolimus (TAC), cyclosporin (CSA) probably makes little or no difference to graft loss and death, may make little or no difference to BKVAN and malignancy, but probably decreases BK viraemia (2 studies, 263 participants: RR 0.61, 95% CI 0.26 to 1.41; I2 = 38%) and probably reduces the risk of new-onset diabetes after transplantation (1 study, 200 participants: RR 0.41, 95% CI 0.12 to 1.35) (both moderate certainty evidence). Compared to azathioprine, mycophenolate mofetil (MMF) probably makes little or no difference to graft loss and BK viraemia but probably reduces the risk of death (1 study, 133 participants: RR 0.43, 95% CI 0.16 to 1.16) and malignancy (1 study, 199 participants: RR 0.43, 95% CI 0.16 to 1.16) (both moderate certainty evidence). Compared to mycophenolate sodium (MPS), CSA has uncertain effects on graft loss and death, may make little or no difference to BK viraemia, but may reduce BKVAN (1 study, 224 participants: RR 0.06, 95% CI 0.00 to 1.20; low certainty evidence). Compared to immunosuppression dose reduction, MMF or TAC conversion to everolimus or sirolimus may make little or no difference to graft loss, BK viraemia or BKVAN (low certainty evidence). TAC conversion to sirolimus probably results in more people having a reduced BK viral load (< 600 copies/mL) than immunosuppression reduction (1 study, 30 participants: RR 1.31, 95% CI 0.90 to 1.89; moderate certainty evidence). Compared to MPS, everolimus had uncertain effects on graft loss and BK viraemia, may reduce BKVAN (1 study, 135 participants: 0.06, 95% CI 0.00 to 1.11) and may increase the risk of death (1 study, 135 participants: RR 3.71, 95% CI 0.20 to 67.35) (both low certainty evidence). Compared to CSA, everolimus may make little or no difference to BK viraemia, has uncertain effects on graft loss and BKVAN, but may increase the risk of death (1 study, 185 participants: RR 3.71, 95% CI 0.42 to 32.55; low certainty evidence). Compared to immunosuppression reduction, the leflunomide derivative FK778 may make little or no difference to graft loss, probably results in a greater reduction in plasma BK viral load (1 study, 44 participants: -0.60 copies/µL, 95% CI -1.22 to 0.02; moderate certainty evidence), but had uncertain effects on BKVAN and malignancy. Aggravated hypertension may be increased with KF778 (1 study, 46 participants: RR 8.23, 95% CI 0.50 to 135.40; low certainty evidence). There were no deaths in either group.
Intense monitoring early after transplantation for BK viruria and BK viraemia is effective in improving BK virus infection outcomes as it helps with early detection of the infection and allows for a timely reduction in immunosuppression reduction. There is insufficient evidence to support any other intervention for BK virus infection in kidney transplant recipients.
Wajih Z
,Karpe KM
,Walters GD
《Cochrane Database of Systematic Reviews》
-
Oral budesonide for induction of remission in ulcerative colitis.
Sherlock ME
,MacDonald JK
,Griffiths AM
,Steinhart AH
,Seow CH
... -
《Cochrane Database of Systematic Reviews》
-
Sex and gender as predictors for allograft and patient-relevant outcomes after kidney transplantation.
Sex, as a biological construct, and gender, defined as the cultural attitudes and behaviours attributed by society, may be associated with allograft loss, death, cancer, and rejection. Other factors, such as recipient age and donor sex, may modify the association between sex/gender and post-transplant outcomes.
We sought to evaluate the prognostic effects of recipient sex and, separately, gender as independent predictors of graft loss, death, cancer, and allograft rejection following kidney or simultaneous pancreas-kidney (SPK) transplantation. We aimed to evaluate this prognostic effect by defining the relationship between recipient sex or gender and post-transplantation outcomes identifying reasons for variations between sexes and genders, and then quantifying the magnitude of this relationship.
We searched MEDLINE and EMBASE databases from inception up to 12 April 2023, through contact with the Cochrane Kidney and Transplant Information Specialist, using search terms relevant to this review and no language restrictions.
Cohort, case-control, or cross-sectional studies were included if sex or gender were the primary exposure and clearly defined. Studies needed to focus on our defined outcomes post-transplantation. Sex was defined as the chromosomal, gonadal, and anatomical characteristics associated with the biological sex, and we used the terms "males" and "females". Gender was defined as the attitudes and behaviours that a given culture associates with a person's biological sex, and we used the terms "men" and "women".
Two authors independently assessed the references for eligibility, extracted the data and assessed the risk of bias using the Quality in Prognosis Studies (QUIPS) tool. Whenever appropriate, we performed random-effects meta-analyses to estimate the mean difference in outcomes. The outcomes of interest included the Standardised Outcomes in Nephrology-Kidney Transplant (SONG-Tx) core outcomes, allograft loss, death, cancer (overall incidence and site-specific) and acute or chronic graft rejection.
Fifty-three studies (2,144,613 patients; range 59 to 407,963) conducted between 1990 and 2023 were included. Sixteen studies were conducted in the Americas, 12 in Europe, 11 in the Western Pacific, four in the Eastern Mediterranean, three in Africa, two in Southeast Asia, and five across multiple regions. All but one study focused on sex rather than gender as the primary exposure of interest. The number identified as male was 54%; 49 studies included kidney transplant recipients, and four studies included SPK transplant recipients. Twenty-four studies included adults and children, 25 studies included only adults, and four studies included only children. Data from 33 studies were included in the meta-analyses. Among these, six studies presented unadjusted hazard ratios (HRs) that assessed the effect of recipient sex on kidney allograft loss. The other studies reported risk ratios (RRs) for the pre-defined outcomes. Notably, the decision to restrict the meta-analyses to unadjusted estimates arose from the variation in covariate adjustment methods across studies, lacking a common set of adjusted variables. Only three studies considered the modifying effect of recipient age on graft loss or death, which is likely crucial to evaluating sex differences in post-transplant outcomes. No studies considered the modifying effect of recipient age on cancer incidence or allograft rejection risk. In low certainty evidence, compared with male recipients, being female may make little or no difference in kidney allograft loss post-transplantation (7 studies, 5843 patients: RR 0.91, 95% CI 0.73 to 1.12; I2 = 73%). This was also observed in studies that included time-to-event analyses (6 studies, 238,937 patients; HR 1.07, 95% CI, 0.95 to 1.20; I2 = 44%). Two recent large registry-based cohort studies that considered the modifying effects of donor sex and recipient age showed that female recipients under 45 years of age had significantly higher graft loss rates than age-matched male recipients in the setting of a male donor. In contrast, female recipients 60 years and older had lower graft loss rates than age-matched male recipients, regardless of donor sex. Compared with male recipients, being female may make little or no difference in death up to 30 years post-transplantation; however, the evidence is very uncertain (13 studies, 60,818 patients: RR 0.94, 95% CI 0.81 to 1.09; I2 = 92%). Studies that considered the modifying effect of recipient age and donor sex showed that female recipients had a higher excess death risk than males under 45 years of age in the setting of a male donor. Compared with male recipients, being female may make little or no difference in cancer incidence up to 20 years post-transplantation; however, the evidence is very uncertain (7 studies, 25,076 patients; RR 0.84, 95% CI 0.70 to 1.01; I2 = 60%). Compared with male recipients, being female may make little or no difference in the incidence of acute and chronic kidney allograft rejection up to 15 years post-transplantation (9 studies, 6158 patients: RR 0.89, 95% CI 0.75 to 1.05; I2 =54%; low certainty evidence). One study assessed gender and reported that when compared with men, women experienced better five-year survival in high (HR 0.71, 95% CI 0.59 to 0.87) and middle-income areas (HR 0.82, 95% CI 0.74 to 0.92), with no difference in low-income areas (HR 0.85, 95% CI 0.72 to 1.01). There was considerable uncertainty regarding any association between sex or gender and post-transplant patient-relevant outcomes. This was primarily due to clinical and methodological heterogeneity. The observed clinical heterogeneity between studies could be attributed to diverse patient characteristics within sample populations. As a result of limited sex-stratified demographic data being provided, further investigation of this heterogeneity was constrained. However, factors contributing to this finding may include recipient age, donor age, types, and sex. Methodological heterogeneity was noted with the interchangeable use of sex and gender, outcome misclassification, the use of different measures of effects, inconsistent covariate profiles, and disregard for important effect modification.
There is very low to low certainty evidence to suggest there are no differences in kidney and pancreas allograft survival, patient survival, cancer, and acute and chronic allograft rejection between male and female kidney and SPK transplant recipients.
Jayanti S
,Beruni NA
,Chui JN
,Deng D
,Liang A
,Chong AS
,Craig JC
,Foster B
,Howell M
,Kim S
,Mannon RB
,Sapir-Pichhadze R
,Scholes-Robertson NJ
,Strauss AT
,Jaure A
,West L
,Cooper TE
,Wong G
... -
《Cochrane Database of Systematic Reviews》