Substitution of wheat straw with sugarcane bagasse in low-forage diets fed to mid-lactation dairy cows: Milk production, digestibility, and chewing behavior.
Sugarcane bagasse (SB) is a low-quality roughage source that is often plentiful during times of forage shortage. It is generally less costly compared with other conventional sources of forage. We hypothesized that SB could be used as a source of roughage for dairy cattle by replacing wheat straw (WS), another low-quality forage. This study evaluated the effects of replacing WS with SB in diets offered to mid-lactation dairy cows on milk production and fatty acid profile, intake, digestibility, chewing activity, and ruminal fermentation. Nine multiparous Holstein cows averaging (mean ± standard deviation) 105 ± 12 d in milk, 42.1 ± 2.9 kg of milk/d, and 617 ± 59 kg of body weight were used in a replicated 3 × 3 Latin square with 21-d periods. Treatments were (% of dietary dry matter, DM): (1) 0SB, diet containing 0% SB and 27% WS, (2) 9SB, diet containing 9% SB and 18% WS, and (3) 18SB, diet containing 18% SB and 9% WS. Sugarcane bagasse had greater organic matter (OM; 94.1 vs. 85.1% of DM), neutral detergent fiber (NDF; 86.2 vs. 76.4% of DM), acid detergent fiber (ADF; 62.9 vs. 45.2% of DM), and lignin (19.9 vs. 10.3% of DM) concentration, but less crude protein (CP; 2.63 vs. 3.72% of DM) concentration than WS. Sugarcane bagasse also had greater physically effective NDF (total dietary NDF multiplied by % of TMR on the 8-mm + 19-mm sieves, peNDF8; 63.2 vs. 40.6% of DM) and undegraded NDF after 288 h of incubation (uNDF288; 35.5 vs. 21.2% of DM) contents than WS. The undegraded NDF after 30 h of incubation (uNDF30) content was similar for all diets; however, peNDF8 concentration and proportion of long particles (retained on a 19-mm sieve) increased linearly as SB inclusion in the diets increased. Cows increasingly sorted against long particles as SB replaced WS. Intakes of DM (26.53 kg/d) and NDF (8.58 kg/d) did not differ among the treatments, but intakes of OM and CP decreased, whereas ADF and uNDF288 intakes increased with SB inclusion level. Total-tract digestibilities of OM, CP, and NDF decreased linearly as SB replaced WS. Milk yield (37.0 kg/d), energy-corrected milk yield (ECM; 38.2 kg/d), feed efficiency (1.44 kg ECM yield/kg DM intake), and milk composition (fat, 3.89%; true protein, 2.90%) did not differ among diets. Increasing SB concentration of the diet linearly increased rumination time, but ruminal pH (ruminocentesis, 4 h after feeding) decreased. Total volatile fatty acid concentration increased linearly, whereas acetate:propionate decreased linearly, as SB replaced WS. The results indicate that replacement of WS with increasing levels of SB in low-forage diets with similar uNDF30 concentrations did not affect performance of mid-lactation dairy cows. We conclude that SB can be used as a fiber source in diets fed to dairy cows in mid-lactation; however, the decrease in total-tract digestibility of diets may decrease lactational performance when fed to high-producing dairy cows.
Molavian M
,Ghorbani GR
,Rafiee H
,Beauchemin KA
... -
《-》
Performance of dairy cows fed diets with similar proportions of undigested neutral detergent fiber with wheat straw substituted for alfalfa hay, corn silage, or both.
This study evaluated the effects of feeding diets that were formulated to contain similar proportions of undigested neutral detergent fiber (uNDF) from forage, with wheat straw (WS) substituted for corn silage (CS), alfalfa hay (AH), or both. The diets were fed to lactating dairy cows and intake, digestibility, blood metabolites, and milk production were examined. Thirty-two multiparous Holstein cows (body weight = 642 ± 50 kg; days in milk = 78 ± 11 d; milk production = 56 ± 6 kg/d; mean ± standard deviation) were used in a randomized block design with 6-wk periods after a 10-d covariate period. Each period consisted of 14 d of adaptation followed by 28 d of data collection. The control diet contained CS and AH as forage sources (CSAH) with 17% of dietary dry matter as uNDF after 30 h of incubation (uNDF30). Wheat straw was substituted for AH (WSCS), CS (WSAH), or both (WSCSAH) on an uNDF30 basis, and beet pulp was used to obtain similar concentrations of NDF digestibility after 30 h of incubation (NDFD30 = 44.5% of NDF) across all diets. The 4 diets also contained similar concentrations of net energy for lactation and metabolizable protein. Dry matter intake was greatest for WSCS (27.8 kg/d), followed by CSAH (25.7 kg/d), WSCSAH (25.2 kg/d), and WSAH (24.2 kg/d). However, yields of milk, 3.5% fat-corrected milk (FCM), and energy-corrected milk did not differ, resulting in higher FCM efficiency (kg of FCM yield/kg of dry matter intake) for WSAH (1.83) and WSCSAH (1.79), followed by CSAH (1.69) and WSCS (1.64). Milk protein percentage was greater for CSAH (2.84%) and WSCS (2.83%) than for WSAH (2.78%), and WSCSAH (2.81%) was intermediate. The opposite trend was observed for milk urea nitrogen, which was lower for CSAH (15.8 mg/dL), WSCS (15.8 mg/dL), and WSCSAH (17.0 mg/dL) than for WSAH (20 mg/dL). Total-tract NDF digestibility and ruminal pH were greater for diets containing WS than the diet without WS (CSAH), but digestibility of other nutrients was not affected by dietary treatments. Cows fed WSAH had less body reserves (body weight change = -13.5 kg/period) than the cows fed the other diets, whereas energy balance was greatest for those fed WSCS. The results showed that feeding high-producing dairy cows diets containing different forage sources but formulated to supply similar concentrations of uNDF30 while maintaining NDFD30, net energy for lactation, and metabolizable protein constant did not influence milk production. However, a combination of WS and CS (WSCS diet) compared with a diet with CS and AH improved feed intake, ruminal pH, total-tract NDF digestibility, and energy balance of dairy cows.
Kahyani A
,Ghorbani GR
,Alikhani M
,Ghasemi E
,Sadeghi-Sefidmazgi A
,Beauchemin KA
,Nasrollahi SM
... -
《-》
Effects of corn silage hybrids and dietary nonforage fiber sources on feed intake, digestibility, ruminal fermentation, and productive performance of lactating Holstein dairy cows.
This experiment was conducted to determine the effects of corn silage hybrids and nonforage fiber sources (NFFS) in high forage diets formulated with high dietary proportions of alfalfa hay (AH) and corn silage (CS) on ruminal fermentation and productive performance by early lactating dairy cows. Eight multiparous Holstein cows (4 ruminally fistulated) averaging 36±6.2 d in milk were used in a duplicated 4 × 4 Latin square design experiment with a 2 × 2 factorial arrangement of treatments. Cows were fed 1 of 4 dietary treatments during each of the four 21-d replicates. Treatments were (1) conventional CS (CCS)-based diet without NFFS, (2) CCS-based diet with NFFS, (3) brown midrib CS (BMRCS)-based diet without NFFS, and (4) BMRCS-based diet with NFFS. Diets were isonitrogenous and isocaloric. Sources of NFFS consisted of ground soyhulls and pelleted beet pulp to replace a portion of AH and CS in the diets. In vitro 30-h neutral detergent fiber (NDF) degradability was greater for BMRCS than for CCS (42.3 vs. 31.2%). Neither CS hybrids nor NFFS affected intake of dry matter (DM) and nutrients. Digestibility of N, NDF, and acid detergent fiber tended to be greater for cows consuming CCS-based diets. Milk yield was not influenced by CS hybrids and NFFS. However, a tendency for an interaction between CS hybrids and NFFS occurred, with increased milk yield due to feeding NFFS with the BMRCS-based diet. Yields of milk fat and 3.5% fat-corrected milk decreased when feeding the BMRCS-based diet, and a tendency existed for an interaction between CS hybrids and NFFS because milk fat concentration further decreased by feeding NFFS with BMRCS-based diet. Although feed efficiency (milk/DM intake) was not affected by CS hybrids and NFFS, an interaction was found between CS hybrids and NFFS because feed efficiency increased when NFFS was fed only with BMRCS-based diet. Total volatile fatty acid production and individual molar proportions were not affected by diets. Dietary treatments did not influence ruminal pH profiles, except that duration (h/d) of pH <5.8 decreased when NFFS was fed in a CCS-based diet but not in a BMRCS-based diet, causing a tendency for an interaction between CS hybrids and NFFS. Overall measurements in our study reveal that high forage NDF concentration (20% DM on average) may eliminate potentially positive effects of BMRCS. In the high forage diets, NFFS exerted limited effects on productive performance when they replaced AH and CS. Although the high quality AH provided adequate NDF (38.3% DM) for optimal rumen fermentative function, the low NDF concentration of the AH and the overall forage particle size reduced physically effective fiber and milk fat concentration.
Holt MS
,Williams CM
,Dschaak CM
,Eun JS
,Young AJ
... -
《-》