Microtubule patterning during meiotic maturation in mouse oocytes is determined by cell cycle-specific sorting and redistribution of gamma-tubulin.
摘要:
The topography of microtubule assembly events during meiotic maturation of animal oocytes demands tight spatial control and temporal precision. To better understand what regulates the timing and location of microtubule assembly, synchronously maturing mouse oocytes were evaluated with respect to gamma-tubulin, pericentrin, and total tubulin polymer fractions at specific stages of meiotic progression. gamma-Tubulin remained associated with cytoplasmic centrosomes through diakinesis of meiosis-1. Following chromatin condensation and perinuclear centrosome aggregation, gamma-tubulin relocated to a nuclear lamina-bounded compartment in which meiosis-1 spindle assembly occurred. gamma-Tubulin was stably associated with the meiotic spindle from prometaphase-1 through to anaphase-2, but also exhibited cell cycle-specific relocalization to cytoplasmic centrosomes. Specifically, anaphase onset of both meiosis-1 and -2 was characterized by the concomitant appearance of gamma-tubulin and microtubule nucleation in subcortical centrosomes. Brief pulses of taxol applied at specific cell cycle stages enhanced detection of gamma-tubulin compartmentalization, consistent with a gamma-tubulin localization-dependent spatial restriction of microtubule assembly during meiotic progression. In addition, a taxol pulse during meiotic resumption impaired subsequent gamma-tubulin sorting, resulting in monopolar spindle formation and cell cycle arrest in meiosis-1; despite cell cycle arrest, polar body extrusion occurred roughly on schedule. Therefore, sorting of gamma-tubulin is involved in both the timing of location of meiotic spindle assembly as well as the coordination of karyokinesis and cytokinesis in mouse oocytes.
收起
展开
DOI:
10.1006/dbio.2001.0444
被引量:
年份:
2001


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(430)
参考文献(0)
引证文献(24)
来源期刊
影响因子:3.145
JCR分区: 暂无
中科院分区:暂无