DEVELOPMENTAL BIOLOGY
发育生物学
ISSN: 0012-1606
自引率: 7.1%
发文量: 213
被引量: 27830
影响因子: 3.145
通过率: 暂无数据
出版周期: 半月刊
审稿周期: 1.5
审稿费用: 0
版面费用: 暂无数据
年文章数: 213
国人发稿量: 7

投稿须知/期刊简介:

Developmental Biology publishes original research on mechanisms of development, differentiation, and growth in animals and plants at the molecular, cellular,and genetic levels. Areas of particular emphasis include transcriptional control mechanisms, embryonic patterning, cellñcell interactions, growth factors and signaltransduction, and regulatory hierarchies. Research Areas Include: Molecular genetics of development; Control of gene expression; Cell interactions and cell-matrix interactions; Mechanisms of differentiation; Growth factors and oncogenes; Regulation of stem cell populations; Gametogenesis and fertilization; Developmental endocrinology; Plant development.

期刊描述简介:

Developmental Biology (DB) publishes original research on mechanisms of development, differentiation, and growth in animals and plants at the molecular, cellular, genetic and evolutionary levels. Areas of particular emphasis include transcriptional control mechanisms, embryonic patterning, cell-cell interactions, growth factors and signal transduction, and regulatory hierarchies in developing plants and animals. Research Areas Include: • Molecular genetics of development • Control of gene expression • Cell interactions and cell-matrix interactions • Mechanisms of differentiation • Growth factors and oncogenes • Regulation of stem cell populations • Evolution of developmental control • Gametogenesis and fertilization

最新论文
  • Over-expression of Ultrabithorax alters embryonic body plan and wing patterns in the butterfly Bicyclus anynana.

    In insects, forewings and hindwings usually have different shapes, sizes, and color patterns. A variety of RNAi experiments across insect species have shown that the hox gene Ultrabithorax (Ubx) is necessary to promote hindwing identity. However, it remains unclear whether Ubx is sufficient to confer hindwing fate to forewings across insects. Here, we address this question by over-expressing Ubx in the butterfly Bicyclus anynana using a heat-shock promoter. Ubx whole-body over-expression during embryonic and larvae development led to body plan changes in larvae but to mere quantitative changes to adult morphology, respectively. Embryonic heat-shocks led to fused segments, loss of thoracic and abdominal limbs, and transformation of head limbs to larger appendages. Larval heat-shocks led to reduced eyespot size in the expected homeotic direction, but neither additional eyespots nor wing shape changes were observed in forewings as expected of a homeotic transformation. Interestingly, Ubx was found to be expressed in a novel, non-characteristic domain - in the hindwing eyespot centers. Furthermore, ectopic expression of Ubx on the pupal wing activated the eyespot-associated genes spalt and Distal-less, known to be directly repressed by Ubx in the fly׳s haltere and leg primordia, respectively, and led to the differentiation of black wing scales. These results suggest that Ubx has been co-opted into a novel eyespot gene regulatory network, and that it is capable of activating black pigmentation in butterflies.

    被引量:15 发表:1970

  • Abscisic acid rescues the root meristem defects of the Medicago truncatula latd mutant.

    The LATD gene of the model legume, Medicago truncatula, is required for the normal function of three meristems, i.e. the primary root, lateral roots and nitrogen-fixing nodules. In latd mutants, primary root growth eventually arrests, resulting in a disorganized root tip lacking a presumptive meristem and root cap columella cells. Lateral root organs are more severely affected; latd lateral roots and nodules arrest immediately after emerging from the primary root, and reveal a lack of organization. Here we show that the plant hormone, abscisic acid (ABA), can rescue the latd root, but not nodule, meristem defects. Growth on ABA is sufficient to restore formation of small, cytoplasm-rich cells in the presumptive meristem region, rescue meristem organization and root growth and formation of root cap columella cells. In contrast, inhibition of ethylene synthesis or signaling fails to restore latd primary root growth. We find that latd mutants have normal levels of ABA, but exhibit reduced sensitivity to the hormone in two other ABA-dependent processes: seed germination and stomatal closure. Together, these observations demonstrate that the latd mutant is defective in the ABA response and indicate a role for LATD-dependent ABA signaling in M. truncatula root meristem function.

    被引量:- 发表:1970

  • Developmental basis of severe neural tube defects in the loop-tail (Lp) mutant mouse: use of microsatellite DNA markers to identify embryonic genotype.

    Mouse embryos homozygous for the mutation loop-tail (Lp) develop lethal defects in which the neural tube remains open from the hindbrain to the caudal extremity, a condition that closely resembles the human malformation craniorachischisis. Heterozygotes develop tail defects and occasional spina bifida, but are generally viable. In order to study the early development of these defects, it is necessary to determine the genotype of embryos at stages prior to the first appearance of the morphological abnormalities. We used a microsatellite DNA sequence, Crp, that is closely linked to the Lp locus and which segregates polymorphic variants in matings between Lp/+ mice, thus permitting identification of embryos of Lp/Lp, Lp/+ and +/+ genotypes. We found that the severe phenotype craniorachischisis is present at 9.5 and 10.5 days of gestation only in Lp/Lp embryos in utero, whereas Lp/+ and +/+ littermates show neural tube closure throughout most of the body axis. The open neural tube phenotype also develops in Lp/Lp embryos growing in whole embryo culture. A small proportion of Lp/+ embryos were found to develop this phenotype in vitro, but only when culture conditions were suboptimal. Analysis of 8.5-day embryos revealed that the initial defect in Lp/Lp embryos is failure to initiate neural tube closure at the cervical/hindbrain boundary when the embryo has 6-7 somites. Thereafter, the neural tube remains open throughout the body axis, with the exception of the midbrain and forebrain where neural tube closure is initiated independently. Closure at the midbrain/forebrain boundary does not appear to be defective in Lp/Lp embryos. Heterozygous Lp/+ embryos initiate neural tube closure at the cervical/hindbrain boundary with a slight delay compared with +/+ littermates. Moreover, at 10.5 days of gestation, Lp/+ embryos undergo delayed closure of the posterior neuropore. Thus, Lp/+ embryos are defective in several aspects of the neurulation process. The pattern of delayed neuropore closure in Lp/+ embryos resembles that caused by the ct and Sp mutations and is likely to be responsible for the development of tail defects (i.e., looped tails) and spina bifida in Lp/+ mice. The use of microsatellite markers to determine the genotype of mutant embryos has general application: microsatellites are widespread throughout the mouse genome, so that informative sequences are likely to be available with close linkage to the majority of mutant genes. Moreover, polymorphisms can be detected using the polymerase chain reaction, making it possible to determine the genotype of very early embryos when only small amounts of material are available.

    被引量:29 发表:1994

统计分析
是否有问题?您可以直接对期刊官方提问 提问

最近浏览

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读