High frequency of recurrent mutations in BRCA1 and BRCA2 genes in Polish families with breast and ovarian cancer.

来自 PUBMED

摘要:

Germ-line mutations in BRCA1 and BRCA2 genes result in a significantly increased risk of breast and ovarian cancer. Other genes involved in an increased predisposition to breast cancer include the TP53 gene, mutated in Li-Fraumeni syndrome. To estimate the frequency of germ-line mutations in these three genes in Upper Silesia, we have analyzed 47 breast/ovarian cancer families from that region. We found five different disease predisposing mutations in 17 (36%) families. Twelve families (25.5%) carried known BRCA1 mutations (5382insC and C61G), four families (8.5%) carried novel BRCA2 mutations (9631delC and 6886delGAAAA), and one family (2%) harbored novel mutation 1095del8 in the TP53 gene, which is the largest germline deletion in coding sequence of this gene identified thus far. The 5382insC mutation in BRCA1 was found in 11 families and the 9631delC mutation in BRCA2 occurred in three families. These two mutations taken together contribute to 82% of all mutations found in this study, and 30% of the families investigated harbor one of these mutations. The very high frequency of common mutations observed in these families can only be compared to that reported for Ashkenazi Jewish, Icelandic, and Russian high-risk families. This frequency, however, may not be representative for the entire Polish population. The observed distribution of mutations will favor routine pre-screening of predisposed families using a simple and cost-effective test.

收起

展开

DOI:

10.1002/1098-1004(200012)16:6<482::AID-HUMU5>3.0.CO;2-O

被引量:

17

年份:

2000

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(536)

参考文献(0)

引证文献(17)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读