Ovotoxicity in female Fischer rats and B6 mice induced by low-dose exposure to three polycyclic aromatic hydrocarbons: comparison through calculation of an ovotoxic index.

来自 PUBMED

作者:

Borman SMChristian PJSipes IGHoyer PB

展开

摘要:

Extensive destruction of primordial follicles by exposure to ovarian toxicants can cause early menopause in women. Primordial follicle destruction is known to result from dosing of mice and rats with three polycyclic aromatic hydrocarbons (PAHs), contaminants commonly found in cigarette smoke. Therefore, the purpose of this study was to compare relative ovotoxicity in mice and rats using the PAHs, 9, 10-dimethylbenzanthracene (DMBA), 3-methylcholanthrene (3-MC), and benzo[a]pyrene (BaP). Female B6C3F(1) mice and Fischer 344 rats (age 28 days) were dosed daily (ip) with vehicle control or a range of doses of the PAHs. Two groups were dosed with the occupational chemicals 4-vinylcyclohexene (VCH; 500 mg/kg ip) or its diepoxide metabolite (VCD; 80 mg/kg ip), other known ovotoxicants. After 15 days, ovaries were collected, histologically prepared, and follicles were microscopically classified (primordial, primary, or secondary) and counted. The dose of each chemical that produced 50% loss of primordial follicles (p < 0.05) was determined (ED50) and used to calculate an ovotoxic index (OI) in mice and rats (ED50 x 15 days). Thus, a chemical with a lower OI is more toxic. Primordial follicles in mice displayed a lower OI than rats to all chemicals tested (mouse: DMBA, 0.0012; 3-MC, 0.003; BaP, 0.18; VCD, 6.8; VCH, 69; rat: DMBA, 0.45; 3-MC, >3.4; BaP, >3.6; VCD, 8.6; VCH, >69). In mice, DMBA targeted primordial follicles at a 10-fold lower concentration than primary and secondary follicles, whereas 3-MC exposure targeted primordial and primary follicles to a similar degree. BaP exposure targeted primordial and primary follicles at a 100-fold higher concentration than DMBA or 3-MC. Although BaP and 3-MC did not target secondary follicles in mice, secondary follicles in rats were most susceptible to 3-MC. Furthermore, all three PAHs were more ovotoxic (lower OI) with repeated low-dose exposure compared with OIs calculated from other studies using single high-dose exposures. The earliest day of impending primordial follicle loss (increase in percentage of unhealthy follicles, p < 0.05) in mice was factored into the OI (ED50 x first day of damage, p < 0.05 x % healthy follicles remaining, relative to control). The revised OI became DMBA d15, 0.0006; 3-MC d12, 0.0008; BaP d15, 0.132; and VCD d8, 2.96. These results predict that DMBA is the most potent ovarian toxicant (lower OI) in both species but VCD damages primordial follicles after shorter exposures. Calculation of the OI in mice and rats represents a method for comparing the relative potential risk of a variety of chemicals that produce ovarian damage at low levels following repeated exposures. The results also demonstrate that low-dose repeated exposures are substantially more toxic to the ovary than a single high-dose exposure. This finding is particularly important in view of the implications for chronic low-dose exposures of women to environmental chemicals.

收起

展开

DOI:

10.1006/taap.2000.9006

被引量:

50

年份:

2000

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(484)

参考文献(0)

引证文献(50)

来源期刊

TOXICOLOGY AND APPLIED PHARMACOLOGY

影响因子:4.456

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读