Induction of nitric oxide synthase mRNA by shear stress requires intracellular calcium and G-protein signals and is modulated by PI 3 kinase.

来自 PUBMED

作者:

Malek AMJiang LLee ISessa WCIzumo SAlper SL

展开

摘要:

We have investigated the signaling pathways by which shear stress induces accumulation of endothelial nitric oxide synthase (eNOS) mRNA in bovine aortic endothelial cells (BAEC). Steady laminar fluid shear stress (20 dyn/cm2) induced a time-dependent increase in eNOS mRNA levels that did not require de novo protein synthesis and was in part transcriptional. Shear responsiveness was conferred on a luciferase reporter by a portion of the eNOS gene promoter encoding the 5'-flanking region between nt -1600 and -779. Shear-mediated induction of eNOS mRNA was abolished by chelation of intracellular calcium ([Ca2+]i) with BAPTA-AM, and inhibited by blockade of calcium entry with SKF96535. In contrast, eNOS mRNA upregulation by shear was potentiated by thapsigargin-mediated depletion of Ca2+i stores. Pertussis toxin (PTX) inhibited both the shear-induced elevation in [Ca2+]i and the subsequent increase in eNOS mRNA, implicating a PTX-sensitive G-protein in both responses. Shear-induced upregulation of eNOS mRNA was unaffected by the calmodulin inhibitor W-7 and by the tyrosine kinase inhibitor herbimycin A, suggesting that neither calmodulin nor tyrosine kinases are required. However, eNOS mRNA upregulation was potentiated by the PI 3-kinase inhibitors wortmannin and LY294002, suggesting that PI 3-kinase inhibits the shear response. Although microtubule integrity is required for the shear-induced regulation of endothelin-1 mRNA and the morphological and cytoskeletal responses to flow, neither microtubule dissolution with nocodazole nor microtubule stabilization with taxol altered shear-induced [Ca2+]i elevation or upregulation of eNOS mRNA. In conclusion, shear stress of BAEC increases eNOS transcriptional rate and upregulates eNOS mRNA levels by a process that requires calmodulin-independent [Ca2+]i signaling and a PTX-sensitive G-protein, is inhibited by PI 3-kinase, and is independent of microtubule integrity and tyrosine kinase activity.

收起

展开

DOI:

10.1006/bbrc.1998.9921

被引量:

23

年份:

1999

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(121)

参考文献(0)

引证文献(23)

来源期刊

BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS

影响因子:3.319

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读