-
The value of whole-body MRI instead of only brain MRI in addition to 18 F-FDG PET/CT in the staging of advanced non-small-cell lung cancer.
Non-small cell lung cancer (NSCLC) is a common neoplasm with poor prognosis in advanced stages. The clinical work-up in patients with locally advanced NSCLC mostly includes 18F-fluorodeoxyglucose positron emission tomography computed tomography (18F-FDG PET/CT) because of its high sensitivity for malignant lesion detection; however, specificity is lower. Diverging results exist whether whole-body MRI (WB-MRI) improves the staging accuracy in advanced lung cancer. Considering WB-MRI being a more time-consuming examination compared to brain MRI, it is important to establish whether or not additional value is found in detecting and characterizing malignant lesions. The purpose of this study is to investigate the value of additional whole-body magnetic resonance imaging, instead of only brain MRI, together with 18F-FDG PET/CT in staging patients with advanced NSCLC planned for curative treatment.
In a prospective single center study, 28 patients with NSCLC stage 3 or oligometastatic disease were enrolled. In addition to 18F-FDG PET/CT, they underwent WB-MRI including the thorax, abdomen, spine, pelvis, and contrast-enhanced examination of the brain and liver. 18F-FDG PET/CT and WB-MRI were separately evaluated by two blinded readers, followed by consensus reading in which the likelihood of malignancy was assessed in detected lesions. Imaging and clinical follow-up for at least 12 months was used as reference standard. Statistical analyses included Fischer's exact test and Clopped-Pearson.
28 patients (mean age ± SD 70.5 ± 8.4 years, 19 women) were enrolled. WB-MRI and FDG-PET/CT both showed maximum sensitivity and specificity for primary tumor diagnosis and similar sensitivity (p = 1.00) and specificity (p = 0.70) for detection of distant metastases. For diagnosis of lymph node metastases, WB-MRI showed lower sensitivity, 0.65 (95% CI: 0.38-0.86) than FDG-PET/CT, 1.00 (95% CI: 0.80-1.00) (p < 0.05), but similar specificity (p = 0.59).
WB-MRI in conjunction with 18F-FDG PET/CT provides no additional value over MRI of the brain only, in staging patients with advanced NSCLC.
Registered locally and approved by the Uppsala University Hospital committee, registration number ASMR020.
Holmstrand H
,Lindskog M
,Sundin A
,Hansen T
... -
《-》
-
Prognostic value of metabolic tumor volume on [(18)F]FDG PET/CT in addition to the TNM classification system of locally advanced non-small cell lung cancer.
Staging of non-small cell lung cancer (NSCLC) is commonly based on [18F]FDG PET/CT, in particular to exclude distant metastases and guide local therapy approaches like resection and radiotherapy. Although it is hoped that PET/CT will increase the value of primary staging compared to conventional imaging, it is generally limited to the characterization of TNM. The first aim of this study was to evaluate the PET parameter metabolic tumor volume (MTV) above liver background uptake as a prognostic marker in lung cancer. The second aim was to investigate the possibility of incorporating MTV into the TNM classification system for disease prognosis in locally advanced NSCLC treated with chemoradiotherapy.
Retrospective evaluation of 235 patients with histologically proven, locally advanced NSCLC from the multi-centre randomized clinical PETPLAN trial and a clinical cohort from a hospital registry. The PET parameters SUVmax, SULpeak, MTV and TLG above liver background uptake were determined. Kaplan-Meier curves and stratified Cox proportional hazard regression models were used to investigate the prognostic value of PET parameters and TNM along with clinical variables. Subgroup analyses were performed to compare hazard ratios according to TNM, MTV, and the two variables combined.
In the multivariable Cox regression analysis, MTV was associated with significantly worse overall survival independent of stage and other prognostic variables. In locally advanced disease stages treated with chemoradiotherapy, higher MTV was significantly associated with worse survival (median 17 vs. 32 months). Using simple cut-off values (45 ml for stage IIIa, 48 ml for stage IIIb, and 105 ml for stage IIIc), MTV was able to further predict differences in survival for stages IIIa-c. The combination of TNM and MTV staging system showed better discrimination for overall survival in locally advanced disease stages, compared to TNM alone.
Higher metabolic tumor volume is significantly associated with worse overall survival and combined with TNM staging, it provides more precise information about the disease prognosis in locally advanced NSCLC treated with chemoradiotherapy compared to TNM alone. As a PET parameter with volumetric information, MTV represents a useful addition to TNM.
Brose A
,Miederer I
,König J
,Gkika E
,Sahlmann J
,Schimek-Jasch T
,Schreckenberger M
,Nestle U
,Kappes J
,Miederer M
... -
《-》
-
Detection of cancer-associated cachexia in lung cancer patients using whole-body [(18)F]FDG-PET/CT imaging: A multi-centre study.
Cancer-associated cachexia (CAC) is a metabolic syndrome contributing to therapy resistance and mortality in lung cancer patients (LCP). CAC is typically defined using clinical non-imaging criteria. Given the metabolic underpinnings of CAC and the ability of [18F]fluoro-2-deoxy-D-glucose (FDG)-positron emission tomography (PET)/computer tomography (CT) to provide quantitative information on glucose turnover, we evaluate the usefulness of whole-body (WB) PET/CT imaging, as part of the standard diagnostic workup of LCP, to provide additional information on the onset or presence of CAC.
This multi-centre study included 345 LCP who underwent WB [18F]FDG-PET/CT imaging for initial clinical staging. A weight loss grading system (WLGS) adjusted to body mass index was used to classify LCP into 'No CAC' (WLGS-0/1 at baseline prior treatment and at first follow-up: N = 158, 51F/107M), 'Dev CAC' (WLGS-0/1 at baseline and WLGS-3/4 at follow-up: N = 90, 34F/56M), and 'CAC' (WLGS-3/4 at baseline: N = 97, 31F/66M). For each CAC category, mean standardized uptake values (SUV) normalized to aorta uptake (<SUVaorta>) and CT-defined volumes were extracted for abdominal and visceral organs, muscles, and adipose-tissue using automated image segmentation of baseline [18F]FDG-PET/CT images. Imaging and non-imaging parameters from laboratory tests were compared statistically. A machine-learning (ML) model was then trained to classify LCP as 'No CAC', 'Dev CAC', and 'CAC' based on their imaging parameters. SHapley Additive exPlanations (SHAP) analysis was employed to identify the key factors contributing to CAC development for each patient.
The three CAC categories displayed multi-organ differences in <SUVaorta>. In all target organs, <SUVaorta> was higher in the 'CAC' cohort compared with 'No CAC' (P < 0.01), except for liver and kidneys, where <SUVaorta> in 'CAC' was reduced by 5%. The 'Dev CAC' cohort displayed a small but significant increase in <SUVaorta> of pancreas (+4%), skeletal-muscle (+7%), subcutaneous adipose-tissue (+11%), and visceral adipose-tissue (+15%). In 'CAC' patients, a strong negative Spearman correlation (ρ = -0.8) was identified between <SUVaorta> and volumes of adipose-tissue. The machine-learning model identified 'CAC' at baseline with 81% of accuracy, highlighting <SUVaorta> of spleen, pancreas, liver, and adipose-tissue as most relevant features. The model performance was suboptimal (54%) when classifying 'Dev CAC' versus 'No CAC'.
WB [18F]FDG-PET/CT imaging reveals groupwise differences in the multi-organ metabolism of LCP with and without CAC, thus highlighting systemic metabolic aberrations symptomatic of cachectic patients. Based on a retrospective cohort, our ML model identified patients with CAC with good accuracy. However, its performance in patients developing CAC was suboptimal. A prospective, multi-centre study has been initiated to address the limitations of the present retrospective analysis.
Ferrara D
,Abenavoli EM
,Beyer T
,Gruenert S
,Hacker M
,Hesse S
,Hofmann L
,Pusitz S
,Rullmann M
,Sabri O
,Sciagrà R
,Sundar LKS
,Tönjes A
,Wirtz H
,Yu J
,Frille A
... -
《-》
-
Diagnostic performance of [(68)Ga]DOTATATE PET/CT, [(18)F]FDG PET/CT, MRI of the spine, and whole-body diagnostic CT and MRI in the detection of spinal bone metastases associated with pheochromocytoma and paraganglioma.
To compare the diagnostic performance of [68Ga]DOTATATE PET/CT, [18F]FDG PET/CT, MRI of the spine, and whole-body CT and MRI for the detection of pheochromocytoma/paraganglioma (PPGL)-related spinal bone metastases.
Between 2014 and 2020, PPGL participants with spinal bone metastases prospectively underwent [68Ga]DOTATATE PET/CT, [18F]FDG PET/CT, MRI of the cervical-thoracolumbar spine (MRIspine), contrast-enhanced MRI of the neck and thoraco-abdominopelvic regions (MRIWB), and contrast-enhanced CT of the neck and thoraco-abdominopelvic regions (CTWB). Per-patient and per-lesion detection rates were calculated. Counting of spinal bone metastases was limited to a maximum of one lesion per vertebrae. A composite of all functional and anatomic imaging served as an imaging comparator. The McNemar test compared detection rates between the scans. Two-sided p values were reported.
Forty-three consecutive participants (mean age, 41.7 ± 15.7 years; females, 22) with MRIspine were included who also underwent [68Ga]DOTATATE PET/CT (n = 43), [18F]FDG PET/CT (n = 43), MRIWB (n = 24), and CTWB (n = 33). Forty-one of 43 participants were positive for spinal bone metastases, with 382 lesions on the imaging comparator. [68Ga]DOTATATE PET/CT demonstrated a per-lesion detection rate of 377/382 (98.7%) which was superior compared to [18F]FDG (72.0%, 275/382, p < 0.001), MRIspine (80.6%, 308/382, p < 0.001), MRIWB (55.3%, 136/246, p < 0.001), and CTWB (44.8%, 132/295, p < 0.001). The per-patient detection rate of [68Ga]DOTATATE PET/CT was 41/41 (100%) which was higher compared to [18F]FDG PET/CT (90.2%, 37/41, p = 0.13), MRIspine (97.6%, 40/41, p = 1.00), MRIWB (95.7%, 22/23, p = 1.00), and CTWB (81.8%, 27/33, p = 0.03).
[68Ga]DOTATATE PET/CT should be the modality of choice in PPGL-related spinal bone metastases due to its superior detection rate.
In a prospective study of 43 pheochromocytoma/paraganglioma participants with spinal bone metastases, [68Ga]DOTATATE PET/CT had a superior per-lesion detection rate of 98.7% (377/382), compared to [18F]FDG PET/CT (p < 0.001), MRI of the spine (p < 0.001), whole-body CT (p < 0.001), and whole-body MRI (p < 0.001).
• Data regarding head-to-head comparison between functional and anatomic imaging modalities to detect spinal bone metastases in pheochromocytoma/paraganglioma are limited. • [68Ga]DOTATATE PET/CT had a superior per-lesion detection rate of 98.7% in the detection of spinal bone metastases associated with pheochromocytoma/paraganglioma compared to other imaging modalities: [18]F-FDG PET/CT, MRI of the spine, whole-body CT, and whole-body MRI. • [68Ga]DOTATATE PET/CT should be the modality of choice in the evaluation of spinal bone metastases associated with pheochromocytoma/paraganglioma.
Jha A
,Patel M
,Ling A
,Shah R
,Chen CC
,Millo C
,Nazari MA
,Sinaii N
,Charles K
,Kuo MJM
,Prodanov T
,Saboury B
,Talvacchio S
,Derkyi A
,Del Rivero J
,O'Sullivan Coyne G
,Chen AP
,Nilubol N
,Herscovitch P
,Lin FI
,Taieb D
,Civelek AC
,Carrasquillo JA
,Pacak K
... -
《-》
-
Fluorine-18-labelled Prostate-specific Membrane Antigen Positron Emission Tomography/Computed Tomography or Magnetic Resonance Imaging to Diagnose and Localise Prostate Cancer. A Prospective Single-arm Paired Comparison (PEDAL).
Multiparametric magnetic resonance imaging (mpMRI) of the prostate is used for prostate cancer diagnosis. However, mpMRI has lower sensitivity for small tumours. Prostate-specific membrane antigen positron emission tomography/computed tomography (PSMA-PET/CT) offers increased sensitivity over conventional imaging. This study aims to determine whether the diagnostic accuracy of 18F-DCFPyL PSMA-PET/CT was superior to that of mpMRI for detecting prostate cancer (PCa) at biopsy.
Between 2020 and 2021, a prospective multicentre single-arm phase 3 imaging trial enrolled patients with clinical suspicion for PCa to have both mpMRI and PSMA-PET/CT (thorax to thigh), with reviewers blinded to the results of other imaging. Multiparametric MRI was considered positive for Prostate Imaging Reporting and Data System (PIRADS) 3-5. PSMA-PET/CT was assessed quantitatively (positive maximum standardised uptake value [SUVmax] >7) and qualitatively (five-point lexicon of certainty). Patients underwent targeted and systematic biopsy, with the technique at the discretion of the treating urologist. Clinically significant PCa (csPCa) was defined as International Society of Urological Pathology grade group (GG) ≥2. The primary outcome was the diagnostic accuracy for detecting PCa, reported as sensitivity, specificity, negative predictive value (NPV), and area under the curve (AUC) of the receiver operating curve. The secondary endpoints included a comparison of the diagnostic accuracy for detecting csPCa, assessing gains in combining PMSA-PET/CT with mpMRI to mpMRI alone.
Of the 236 patients completing both mpMRI and PSMA-PET/CT, 184 (76.7%) had biopsy. Biopsy histology was benign (n = 73), GG 1 (n = 27), and GG ≥2 (n = 84). The diagnostic accuracy of mpMRI for detecting PCa (AUC 0.76; 95% confidence interval [CI] 0.69, 0.82) was higher than that of PSMA-PET/CT (AUC 0.63; 95% CI 0.56, 0.70, p = 0.03). The diagnostic accuracy of mpMRI for detecting csPCa (AUC 0.72; 95% CI 0.67, 0.78) was higher than that of PSMA-PET/CT (AUC 0.62; 95% CI 0.55, 0.69) but not statistically significant (p = 0.27). A combination of PSMA-PET/CT and mpMRI showed excellent sensitivity (98.8%, 95% CI 93.5%, 100%) and NPV (96%, 95% CI 79.6%, 99.9%) over mpMRI alone (86.9% and 80.7%, respectively, p = 0.01). Thirty-two patients (13.6%) had metastatic disease. They tended to be older (68.4 vs 65.1 yr, p = 0.023), and have higher prostate-specific antigen (PSA; median PSA 9.6 vs 6.2ng/ml, p < 0.001) and abnormal prostate on digital rectal examination (78.2% vs 44.1%, p < 0.001).
Multiparametric MRI had superior diagnostic accuracy to PSMA-PET/CT for detecting PCa, though the difference is not significant in case of csPCa detection. A combination of mpMRI and PSMA-PET/CT showed improved sensitivity and NPV. PSMA-PET/CT could be considered for diagnostic use in patients unable to have mpMRI or those with concerning clinical features but negative mpMRI.
In this trial, we compared the ability of 18F-labelled prostate-specific membrane antigen positron emission tomography/computed tomography (PSMA-PET/CT) with that of multiparametric magnetic resonance imaging (mpMRI) to diagnose prostate cancer by biopsy in a prostate-specific antigen screening population. We found that MRI was superior to PSMA to diagnose prostate cancer, though there was no difference in ability to diagnose clinically significant prostate cancer. PSMA-PET/CT could be considered for diagnostic use in patients unable to have mpMRI or those with concerning clinical features but negative mpMRI. Combining MRI with PSMA-PET increases the negative predictive value over MRI alone and may help men avoid invasive prostate biopsy.
Wong LM
,Sutherland T
,Perry E
,Tran V
,Spelman T
,Corcoran N
,Lawrentschuk N
,Woo H
,Lenaghan D
,Buchan N
,Bax K
,Symons J
,Saeed Goolam A
,Chalasani V
,Hegarty J
,Thomas L
,Christov A
,Ng M
,Khanani H
,Lee SF
,Taubman K
,Tarlinton L
... -
《European Urology Oncology》