Multiple machine learning-based integrations of multi-omics data to identify molecular subtypes and construct a prognostic model for HNSCC.

来自 PUBMED

作者:

Luo XLi CQin G

展开

摘要:

Immunotherapy has introduced new breakthroughs in improving the survival of head and neck squamous cell carcinoma (HNSCC) patients, yet drug resistance remains a critical challenge. Developing personalized treatment strategies based on the molecular heterogeneity of HNSCC is essential to enhance therapeutic efficacy and prognosis. We integrated four HNSCC datasets (TCGA-HNSCC, GSE27020, GSE41613, and GSE65858) from TCGA and GEO databases. Using 10 multi-omics consensus clustering algorithms via the MOVICS package, we identified two molecular subtypes (CS1 and CS2) and validated their stability. A machine learning-driven prognostic signature was constructed by combining 101 algorithms, ultimately selecting 30 prognosis-related genes (PRGs) with the Elastic Net model. This signature was further linked to immune infiltration, functional pathways, and therapeutic sensitivity. CS1 exhibited superior survival outcomes in both TCGA and META-HNSCC cohorts. The PRG-based signature stratified patients into low- and high-risk groups, with the low-risk group showing prolonged survival, enhanced immune cell infiltration (B cells, T cells, monocytes), and activated immune functions (cytolytic activity, T cell co-stimulation). High-risk patients were more sensitive to radiotherapy and chemotherapy (e.g., Cisplatin, 5-Fluorouracil), while low-risk patients responded better to immunotherapy and targeted therapies. Our study delineates two molecular subtypes of HNSCC and establishes a robust prognostic model using multi-omics data and machine learning. These findings provide a framework for personalized treatment selection, offering clinical insights to optimize therapeutic strategies for HNSCC patients.

收起

展开

DOI:

10.1186/s41065-025-00380-0

被引量:

0

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(100)

参考文献(0)

引证文献(0)

来源期刊

HEREDITAS

影响因子:2.592

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读