-
The effect of exposure to radiofrequency fields on cancer risk in the general and working population: A systematic review of human observational studies - Part II: Less researched outcomes.
In the framework of the World Health Organization assessment of health effects of exposure to radiofrequency electromagnetic fields (RF-EMF), we have conducted a systematic review of human observational studies on the association between exposure to RF-EMF and risk of neoplastic diseases. Due to the extremely large number of included exposure types/settings and neoplasm combinations, we decided to present the review findings in two separate papers. In the first one we addressed the most investigated exposure-outcome pairs (e.g. glioma, meningioma, acoustic neuroma in relation to mobile phone use, or risk childhood leukemia in relation to environmental exposure from fixed-site transmitters) (Karipidis et al., 2024). Here, we report on less researched neoplasms, which include lymphohematopoietic system tumours, thyroid cancer and oral cavity/pharynx cancer, in relation to wireless phone use, or occupational RF exposure.
Eligibility criteria: We included cohort and case-control studies of neoplasia risks in relation to three types of exposure to RF-EMF: 1. exposure from wireless phone use; 2. environmental exposure from fixed-site transmitters; 3. occupational exposures. In the current paper, we focus on less researched neoplasms including leukaemia, non-Hodgkin's lymphoma and thyroid cancer in mobile phone users; lymphohematopoietic system tumours and oral cavity/pharynx cancer in exposed workers. We focussed on investigations of specific neoplasms in relation to specific exposure sources (termed exposure-outcome pair, abbreviated E-O pairs), noting that a single article may address multiple E-O pairs.
Eligible studies were identified by predefined literature searches through Medline, Embase, and EMF-Portal. Risk-of-bias (RoB) assessment: We used a tailored version of the Office of Health Assessment and Translation (OHAT) RoB tool to evaluate each study's internal validity. Then, the studies were classified into three tiers according to their overall potential for bias (low, moderate and high) in selected, predefined and relevant bias domains.
We synthesized the study results using random effects restricted maximum likelihood (REML) models. Evidence assessment: Confidence in evidence was assessed according to the Grading of Recommendations, Assessment, Development and Evaluations (GRADE) approach.
We included 26 articles, which were published between 1988 and 2019, with participants from 10 countries, reporting on 143 different E-O pairs, including 65 different types of neoplasms. Of these, 19 E-O pairs satisfied the criteria for inclusion in quantitative syntheses of the evidence regarding the risks of leukaemia, non-Hodgkin's lymphoma or thyroid cancer in relation to mobile phone use, and the risks of lymphohematopoietic system tumours or oral cavity/pharynx cancer following occupational exposure to RF-EMF. RF-EMF exposure from mobile phones (ever or regular use vs no or non-regular use) was not associated with an increased risk of leukaemia [meta-estimate of the relative risk (mRR) = 0.99, 95 % CI 0.91-1.07, 4 studies), non-Hodgkin's lymphoma (mRR = 0.99, 95 % CI = 0.92-1.06, 5 studies), or thyroid cancer (mRR = 1.05, 95 % CI = 0.88-1.26, 3 studies). Long-term (10 + years) mobile phone use was also not associated with risk of leukaemia (mRR = 1.03, 95 % CI 0.85-1.24, 3 studies), non-Hodgkin lymphoma (mRR = 0.99, 95 % CI 0.86-1.15, 3 studies), or thyroid cancer (no pooled estimate given the small number of studies). There were not sufficient studies of any specific neoplasms to perform dose-response meta-analyses for either cumulative call time or cumulative number of calls; individual studies did not show statistically significant associations between lifetime intensity of mobile phone use and any specific neoplasm. Occupational RF-EMF exposure (exposed vs unexposed) was not associated with an increased risk of lymphohematopoietic system tumours (mRR = 1.03, 95 % CI = 0.87-1.28, 4 studies) or oral cavity/pharynx cancer (mRR = 0.68, 95 % CI 0.42-1.11, 3 studies). There were not sufficient studies of any specific neoplasms to perform meta-analysis on the intensity or duration of occupational RF-EMF exposure; individual studies did not show statistically significant associations with either of those exposure metrics and any specific neoplasms. The small number of studies, and of exposed cases in some instances, hampered the assessment of the statistical heterogeneity in findings across studies in the meta-analyses. Based on the summary risk of bias, most studies included in the quantitative evidence syntheses were classified at moderate risk of bias. The most critical issue was exposure information bias, especially for occupational studies where the exposure characterization was rated at high risk of bias for all included studies. Outcome information bias was an issue in mortality-based occupational cohort studies investigating non-rapidly fatal neoplasms. Further, the healthy subscriber effect, and (at a lesser extent) the healthy worker effect, were identified as plausible explanations of the decreased risks observed in some studies. The association of RF-EMF exposure from wireless phone use, or workplace equipment/devices, with other important neoplasms was reported by only one or two studies per tumour, so no quantitative evidence syntheses were conducted on these outcomes. It is noted that there were generally no statistically significant exposure-outcome associations for any combinations, independently of the exposure metric and level, with a few studies reporting decreased risks (especially for smoking-related cancers). There was only one study which assessed the effect of RF-EMF exposure from fixed-site transmitters on less researched neoplasms and it reported no statistically significant associations between exposure from base stations and risk of lymphomas overall, lymphoma subtypes, or chronic lymphatic leukaemia in adults.
For near field RF-EMF exposure to the head from mobile phones, there was low certainty of evidence that it does not increase the risk of leukaemia, non-Hodgkin's lymphoma or thyroid cancer. For occupational RF-EMF exposure, there was very low certainty of evidence that it does not increase the risk of lymphohematopoietic system tumours or oral cavity/pharynx cancer. There was not sufficient evidence to assess the effect of whole-body far-field RF-EMF exposure from fixed-site transmitters (broadcasting antennas or base stations), or the effect of RF-EMF from any source on any other important neoplasms.
This project was commissioned and partially funded by the World Health Organization (WHO). Co-financing was provided by the New Zealand Ministry of Health; the Istituto Superiore di Sanità in its capacity as a WHO Collaborating Centre for Radiation and Health; and ARPANSA as a WHO Collaborating Centre for Radiation Protection.
PROSPERO CRD42021236798. Published protocol: [(Lagorio et al., 2021) DOI https://doi.org/10.1016/j.envint.2021.106828].
Karipidis K
,Baaken D
,Loney T
,Blettner M
,Mate R
,Brzozek C
,Elwood M
,Narh C
,Orsini N
,Röösli M
,Paulo MS
,Lagorio S
... -
《-》
-
The effect of exposure to radiofrequency fields on cancer risk in the general and working population: A systematic review of human observational studies - Part I: Most researched outcomes.
The objective of this review was to assess the quality and strength of the evidence provided by human observational studies for a causal association between exposure to radiofrequency electromagnetic fields (RF-EMF) and risk of the most investigated neoplastic diseases.
Eligibility criteria: We included cohort and case-control studies of neoplasia risks in relation to three types of exposure to RF-EMF: near-field, head-localized, exposure from wireless phone use (SR-A); far-field, whole body, environmental exposure from fixed-site transmitters (SR-B); near/far-field occupational exposures from use of hand-held transceivers or RF-emitting equipment in the workplace (SR-C). While no restrictions on tumour type were applied, in the current paper we focus on incidence-based studies of selected "critical" neoplasms of the central nervous system (brain, meninges, pituitary gland, acoustic nerve) and salivary gland tumours (SR-A); brain tumours and leukaemias (SR-B, SR-C). We focussed on investigations of specific neoplasms in relation to specific exposure sources (i.e. E-O pairs), noting that a single article may address multiple E-O pairs.
Eligible studies were identified by literature searches through Medline, Embase, and EMF-Portal. Risk-of-bias (RoB) assessment: We used a tailored version of the Office of Health Assessment and Translation (OHAT) RoB tool to evaluate each study's internal validity. At the summary RoB step, studies were classified into three tiers according to their overall potential for bias (low, moderate and high).
We synthesized the study results using random effects restricted maximum likelihood (REML) models (overall and subgroup meta-analyses of dichotomous and categorical exposure variables), and weighted mixed effects models (dose-response meta-analyses of lifetime exposure intensity). Evidence assessment: Confidence in evidence was assessed using the Grading of Recommendations, Assessment, Development and Evaluations (GRADE) approach.
We included 63 aetiological articles, published between 1994 and 2022, with participants from 22 countries, reporting on 119 different E-O pairs. RF-EMF exposure from mobile phones (ever or regular use vs no or non-regular use) was not associated with an increased risk of glioma [meta-estimate of the relative risk (mRR) = 1.01, 95 % CI = 0.89-1.13), meningioma (mRR = 0.92, 95 % CI = 0.82-1.02), acoustic neuroma (mRR = 1.03, 95 % CI = 0.85-1.24), pituitary tumours (mRR = 0.81, 95 % CI = 0.61-1.06), salivary gland tumours (mRR = 0.91, 95 % CI = 0.78-1.06), or paediatric (children, adolescents and young adults) brain tumours (mRR = 1.06, 95 % CI = 0.74-1.51), with variable degree of across-study heterogeneity (I2 = 0 %-62 %). There was no observable increase in mRRs for the most investigated neoplasms (glioma, meningioma, and acoustic neuroma) with increasing time since start (TSS) use of mobile phones, cumulative call time (CCT), or cumulative number of calls (CNC). Cordless phone use was not significantly associated with risks of glioma [mRR = 1.04, 95 % CI = 0.74-1.46; I2 = 74 %) meningioma, (mRR = 0.91, 95 % CI = 0.70-1.18; I2 = 59 %), or acoustic neuroma (mRR = 1.16; 95 % CI = 0.83-1.61; I2 = 63 %). Exposure from fixed-site transmitters (broadcasting antennas or base stations) was not associated with childhood leukaemia or paediatric brain tumour risks, independently of the level of the modelled RF exposure. Glioma risk was not significantly increased following occupational RF exposure (ever vs never), and no differences were detected between increasing categories of modelled cumulative exposure levels.
In the sensitivity analyses of glioma, meningioma, and acoustic neuroma risks in relation to mobile phone use (ever use, TSS, CCT, and CNC) the presented results were robust and not affected by changes in study aggregation. In a leave-one-out meta-analyses of glioma risk in relation to mobile phone use we identified one influential study. In subsequent meta-analyses performed after excluding this study, we observed a substantial reduction in the mRR and the heterogeneity between studies, for both the contrast Ever vs Never (regular) use (mRR = 0.96, 95 % CI = 0.87-1.07, I2 = 47 %), and in the analysis by increasing categories of TSS ("<5 years": mRR = 0.97, 95 % CI = 0.83-1.14, I2 = 41 %; "5-9 years ": mRR = 0.96, 95 % CI = 0.83-1.11, I2 = 34 %; "10+ years": mRR = 0.97, 95 % CI = 0.87-1.08, I2 = 10 %). There was limited variation across studies in RoB for the priority domains (selection/attrition, exposure and outcome information), with the number of studies evenly classified as at low and moderate risk of bias (49 % tier-1 and 51 % tier-2), and no studies classified as at high risk of bias (tier-3). The impact of the biases on the study results (amount and direction) proved difficult to predict, and the RoB tool was inherently unable to account for the effect of competing biases. However, the sensitivity meta-analyses stratified on bias-tier, showed that the heterogeneity observed in our main meta-analyses across studies of glioma and acoustic neuroma in the upper TSS stratum (I2 = 77 % and 76 %), was explained by the summary RoB-tier. In the tier-1 study subgroup, the mRRs (95 % CI; I2) in long-term (10+ years) users were 0.95 (0.85-1.05; 5.5 %) for glioma, and 1.00 (0.78-1.29; 35 %) for acoustic neuroma. The time-trend simulation studies, evaluated as complementary evidence in line with a triangulation approach for external validity, were consistent in showing that the increased risks observed in some case-control studies were incompatible with the actual incidence rates of glioma/brain cancer observed in several countries and over long periods. Three of these simulation studies consistently reported that RR estimates > 1.5 with a 10+ years induction period were definitely implausible, and could be used to set a "credibility benchmark". In the sensitivity meta-analyses of glioma risk in the upper category of TSS excluding five studies reporting implausible effect sizes, we observed strong reductions in both the mRR [mRR of 0.95 (95 % CI = 0.86-1.05)], and the degree of heterogeneity across studies (I2 = 3.6 %).
Consistently with the published protocol, our final conclusions were formulated separately for each exposure-outcome combination, and primarily based on the line of evidence with the highest confidence, taking into account the ranking of RF sources by exposure level as inferred from dosimetric studies, and the external coherence with findings from time-trend simulation studies (limited to glioma in relation to mobile phone use). For near field RF-EMF exposure to the head from mobile phone use, there was moderate certainty evidence that it likely does not increase the risk of glioma, meningioma, acoustic neuroma, pituitary tumours, and salivary gland tumours in adults, or of paediatric brain tumours. For near field RF-EMF exposure to the head from cordless phone use, there was low certainty evidence that it may not increase the risk of glioma, meningioma or acoustic neuroma. For whole-body far-field RF-EMF exposure from fixed-site transmitters (broadcasting antennas or base stations), there was moderate certainty evidence that it likely does not increase childhood leukaemia risk and low certainty evidence that it may not increase the risk of paediatric brain tumours. There were no studies eligible for inclusion investigating RF-EMF exposure from fixed-site transmitters and critical tumours in adults. For occupational RF-EMF exposure, there was low certainty evidence that it may not increase the risk of brain cancer/glioma, but there were no included studies of leukemias (the second critical outcome in SR-C). The evidence rating regarding paediatric brain tumours in relation to environmental RF exposure from fixed-site transmitters should be interpreted with caution, due to the small number of studies. Similar interpretative cautions apply to the evidence rating of the relation between glioma/brain cancer and occupational RF exposure, due to differences in exposure sources and metrics across the few included studies.
This project was commissioned and partially funded by the World Health Organization (WHO). Co-financing was provided by the New Zealand Ministry of Health; the Istituto Superiore di Sanità in its capacity as a WHO Collaborating Centre for Radiation and Health; and ARPANSA as a WHO Collaborating Centre for Radiation Protection.
PROSPERO CRD42021236798. Published protocol: [(Lagorio et al., 2021) DOI https://doi.org/10.1016/j.envint.2021.106828].
Karipidis K
,Baaken D
,Loney T
,Blettner M
,Brzozek C
,Elwood M
,Narh C
,Orsini N
,Röösli M
,Paulo MS
,Lagorio S
... -
《-》
-
The effects of radiofrequency electromagnetic field exposure on biomarkers of oxidative stress in vivo and in vitro: A systematic review of experimental studies.
Oxidative stress is thought to be related to many diseases. Furthermore, it is hypothesized that radiofrequency electromagnetic fields (RF-EMF) may induce excessive oxidative stress in various cell types and thereby have the potential to compromise human and animal health. The objective of this systematic review (SR) is to summarize and evaluate the literature on the relation between the exposure to RF-EMF in the frequency range from 100 kHz to 300 GHz and biomarkers of oxidative stress.
The SR framework was developed following the guidelines established in the WHO Handbook for Guideline Development and NTP/OHAT's Handbook for Conducting a Literature-Based Health Assessment. We used the latter handbook's methodology for implementing the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach for environmental health assessments. We searched the following databases up until June 30, 2023: PubMed, Embase, Web of Science Core Collection, Scopus, and the EMF-Portal. The reference lists of included studies and retrieved review articles were also manually searched. We rated Risk of Bias (RoB) using the OHAT RoB Rating Tool and assessed publication bias using funnel plots of included studies. We assessed the certainty of the evidence (high, moderate, low, or very low) for an association between RF-EMF and oxidative stress using an adapted version of the GRADE framework. Data were extracted according to a predefined set of forms developed in DistillerSR. Data were analysed after grouping them first as in vitro or in vivo and then according to outcome category, species category, and exposed tissue. We synthesized study results using a random effects meta-analysis when study characteristics were judged sufficiently similar to be combined and heterogeneity (I2) was lower than 75 %, otherwise we describe the findings narratively.
Fifty-six (56) studies, 45 in vivo and 11 in vitro, in which cells (in vitro) or animals (in vivo) were exposed to frequencies in the range 800-2450 MHz, were included in the systematic review after eliminating 12,353 publications because they did not meet the criteria defined in the published protocol (Henschenmacher et al., 2022). Of 56 studies 52 studies with 169 individual results were included in the meta-analysis. Together, these studies examined six human in vitro samples and fifty animal samples, including rodents (mice, rats, hamsters, and guinea pigs, (n = 46)) and rabbits (n = 4). RF-EMF were predominantly applied as continuous wave exposures in these studies. The outcome biomarkers for modified proteins and amino acids were measured in n = 30 studies, for oxidized DNA bases in n = 26 studies, for oxidized lipids in n = 3 studies and hydrogen peroxide production in 2 studies. Outcomes were mostly measured in the brain (n = 22), liver (n = 9), cells (n = 9), blood (n = 6), and testis (n = 2). RoB in studies was high, mainly due to biases in exposure and outcome assessment.
Brain: The effect on biomarkers for oxidized DNA bases in the rodent brain (five studies, n = 98) had an inconsistent effect, varying from a large decrease with a standardized mean difference (SMD) of -3.40 (95 % CI [-5.15, -1.64]) to a large increase with an SMD of 2.2 (95 % CI [0.78, 3.62]). In the brain of rabbits (two studies, n = 44), the effect sizes also varied, from an SMD of -1.06 (95 % CI [-2.13, 0.00]) to an SMD of 5.94 (95 % CI [3.14, 8.73]). The effect on biomarkers for modified proteins and amino acids in the rodent brain (15 studies, n = 328) also varied from a large decrease with an SMD of -6.11 (95 % CI [-8.16, -4.06]) to a large increase with an SMD of 5.33 (95 % CI [2.49, 8.17]). The effect on biomarkers for oxidized lipids in the brain of rodents (one study, n = 56) also varied from a large decrease with SMD = -4.10 (95 % CI [-5.48, -2.73]) to SMD = 1.27 (95 % CI [0.45, 2.10]). Liver: The effect on biomarkers for oxidized DNA bases in the rodent liver (two studies, n = 26) was inconsistent with effect sizes in both directions: SMD = -0.71 (95 % CI [-1.80, 0.38]) and SMD = 1.56 (95 % CI [0.19, 2.92]). The effect on biomarkers for oxidized DNA bases in the rabbits' liver (two studies, n = 60) was medium with a pooled SMD of 0.39 (95 % CI [-0.79, 1.56]). Biomarkers for modified proteins and amino acids in the liver of rodents (six studies, n = 159) increased with a pooled SMD of 0.55 (95 % CI [0.06, 1.05]). Blood: The effect of RF-EMF on biomarkers for oxidized DNA bases in rodent blood (four studies, n = 104) was inconsistent, with SMDs ranging from -1.14 (95 % CI [-2.23, -0.06]) to 1.71 (95 % CI [-0.10, 3.53]). RF-EMF had no effect on biomarkers for modified proteins and amino acids in rodent blood (three studies, n = 40), with a pooled SMD of -0.08 (95 % CI [-1.32, 1.16]). There was a large increase in biomarkers for oxidized DNA bases in rodent plasma (two studies, n = 38) with a pooled SMD of 2.25 (95 % CI [1.27, 3.24]). Gonads: There was an increase in biomarkers for oxidized DNA bases in the rodent testis (two studies, n = 24) with a pooled SMD of 1.60 (95 % CI [0.62, 2.59]). The effect of RF-EMF on biomarkers for modified proteins and amino acids in the ovary of rodents (two studies, n = 52) was inconsistent with a medium effect, SMD = 0.24 (95 % CI [-0.74, 1.23])) and a large effect (SMD = 2.08 (95 % CI [1.22, 2.94])). Thymus: RF-EMF increased biomarkers for modified proteins and amino acids in the thymus of rodents (one study, n = 42) considerably with a pooled SMD of 6.16 (95 % CI [3.55, 8.76]). Cells: RF-EMF increased oxidized DNA bases in rodent cells with SMD of 2.49 (95 % CI [1.30, 3.67]) (one study, n = 27). There was a medium effect in oxidized lipids (one study, n = 18) but not statistically significant with SMD = 0.34 (95 % CI [-0.62, 1.29]).
In in vitro studies in human cells (three studies, n = 110), there were inconsistent increases in biomarkers for oxidized DNA bases, where the SMDs varied between 0.01 (95 % CI [-0.59, 0.62]) and 7.12 (95% CI [0.06, 14.18]) in 4 results (2 of them statistically significant). In rodent cells (three studies, n = 24), there was a not statistically significant large effect in biomarkers for oxidized DNA bases with SMD = 2.07 (95 % CI [-1.38, 5.52]). The RF-EMF biomarkers for modified proteins and amino acids in human cells (one study, n = 18) showed a large effect with SMD = 1.07 (95 % CI [-0.05, 2.19]). In rodent cells (two studies, n = 24) a medium effect of SMD = 0.56 (95 % CI [-0.29, 1.41]) was observed.
The evidence on the relation between the exposure to RF-EMF and biomarkers of oxidative stress was of very low certainty, because a majority of the included studies were rated with a high RoB level and provided high heterogeneity. This is due to inaccurate measurements of exposure and/or of measurement of oxidative stress biomarkers and missing information on the blinding of research personnel to exposure conditions or outcome measurements. There may be no or an inconsistent effect of RF-EMF on biomarkers of oxidative stress in the brain, liver, blood, plasma and serum, and in the female reproductive system in animal experiments but the evidence is of very low certainty. There may be an increase in biomarkers of oxidative stress in testes, serum and thymus of rodents but the evidence is of very low certainty. Future studies should improve experimental designs and characterization of exposure systems as well as the use of validated biomarker measurements with positive controls. Other: This review was partially funded by the World Health Organization. The protocol for this review is registered in PROSPERO (https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42021235573) and published in Environment International (https://doi.org/10.1016/j.envint.2021.106932) (Henschenmacher et al., 2022).
Meyer F
,Bitsch A
,Forman HJ
,Fragoulis A
,Ghezzi P
,Henschenmacher B
,Kellner R
,Kuhne J
,Ludwig T
,Sachno D
,Schmid G
,Tsaioun K
,Verbeek J
,Wright R
... -
《-》
-
The effects of radiofrequency exposure on cognition: A systematic review and meta-analysis of human observational studies.
Benke G
,Abramson MJ
,Brzozek C
,McDonald S
,Kelsall H
,Sanagou M
,Zeleke BM
,Kaufman J
,Brennan S
,Verbeek J
,Karipidis K
... -
《-》
-
Effects of Radiofrequency Electromagnetic Field (RF-EMF) exposure on pregnancy and birth outcomes: A systematic review of experimental studies on non-human mammals.
The World Health Organization is coordinating an international project aimed at systematically reviewing the evidence regarding the association between radiofrequency electromagnetic field (RF-EMF) exposure and adverse health effects. Within the project, 6 topics have been prioritized by an expert group, which include reproductive health outcomes.
According to the protocol published in 2021, a systematic review and meta-analyses on the adverse effects of RF-EMF exposure during pregnancy in offspring of experimental animals were conducted.
Three electronic databases (PubMed, Scopus and EMF Portal) were last searched on September 8 or 17, 2022. Based on predefined selection criteria, the obtained references were screened by two independent reviewers. Studies were included if they met the following criteria: 1) original, sham controlled experimental study on non-human mammals exposed in utero, published in peer-reviewed journals, 2) the experimental RF-EMF exposure was within the frequency range 100 kHz-300 GHz, 3) the effects of RF-EMF exposure on fecundity (litter size, embryonic/fetal losses), on the offspring health at birth (decrease of weight or length, congenital malformations, changes of sex ratio) or on delayed effects (neurocognitive alterations, female infertility or early-onset cancer) were studied. Study characteristics and outcome data were extracted by two reviewers. Risk of bias (RoB) was assessed using the Office of Health Assessment and Translation (OHAT) guidelines. Study results were pooled in a random effects meta-analysis comparing average exposure to no-exposure and in a dose-response meta-analysis using all exposure doses, after exclusion of studies that were rated at "high concern" for RoB. Subgroup analyses were conducted for species, Specific Absorption Rate (SAR) and temperature increase. The certainty of the evidence was assessed using the Grading of Recommendations, Assessment, Development and Evaluations (GRADE) approach.
Eighty-eight papers could be included in this review. Effects on fecundity. The meta-analysis of studies on litter size, conducted at a whole-body average SAR of 4.92 W/kg, did not show an effect of RF-EMF exposure (MD 0.05; 95% CI -0.21 to 0.30). The meta-analysis of studies on resorbed and dead fetuses, conducted at a whole-body average SAR of 20.26 W/kg, showed a significant increase of the incidence in RF-EMF exposed animals (OR 1.84; 95% CI 1.27 to 2.66). The results were similar in the dose-response analysis. Effects on the offspring health at birth. The meta-analysis of studies on fetal weight, conducted at a whole-body average SAR of 9.83 W/kg, showed a small decrease in RF-EMF exposed animals (SMD 0.31; 95% CI 0.15 to 0.48). The meta-analysis of studies on fetal length, conducted at a whole-body average SAR of 4.55 W/kg, showed a moderate decrease in length at birth (SMD 0.45; 95% CI 0.07 to 0.83). The meta-analysis of studies on the percentage of fetuses with malformations, conducted at a whole-body average SAR of 6.75 W/kg, showed a moderate increase in RF-EMF exposed animals (SMD -0.45; 95% CI -0.68 to -0.23). The meta-analysis of studies on the incidence of litters with malformed fetuses, conducted at a whole-body average SAR of 16.63 W/kg, showed a statistically significant detrimental RF-EMF effect (OR 3.22; 95% CI 1.9 to 5.46). The results were similar in the dose-response analyses. Delayed effects on the offspring health. RF-EMF exposure was not associated with detrimental effects on brain weight (SMD 0.10; 95% CI -0.09 to 0.29) and on learning and memory functions (SMD -0.54; 95% CI -1.24 to 0.17). RF-EMF exposure was associated with a large detrimental effect on motor activity functions (SMD 0.79; 95% CI 0.21 to 1.38) and a moderate detrimental effect on motor and sensory functions (SMD -0.66; 95% CI -1.18 to -0.14). RF-EMF exposure was not associated with a decrease of the size of litters conceived by F2 female offspring (SMD 0.08; 95% CI -0.39 to 0.55). Notably, meta-analyses of neurobehavioural effects were based on few studies, which suffered of lack of independent replication deriving from only few laboratories.
There was high certainty in the evidence for a lack of association of RF-EMF exposure with litter size. We attributed a moderate certainty to the evidence of a small detrimental effect on fetal weight. We also attributed a moderate certainty to the evidence of a lack of delayed effects on the offspring brain weight. For most of the other endpoints assessed by the meta-analyses, detrimental RF-EMF effects were shown, however the evidence was attributed a low or very low certainty. The body of evidence had limitations that did not allow an assessment of whether RF-EMF may affect pregnancy outcomes at exposure levels below those eliciting a well-known adverse heating impact. In conclusion, in utero RF-EMF exposure does not have a detrimental effect on fecundity and likely affects offspring health at birth, based on the meta-analysis of studies in experimental mammals on litter size and fetal weight, respectively. Regarding possible delayed effects of in utero exposure, RF-EMF probably does not affect offspring brain weight and may not decrease female offspring fertility; on the other hand, RF-EMF may have a detrimental impact on neurobehavioural functions, varying in magnitude for different endpoints, but these last findings are very uncertain. Further research is needed on the effects at birth and delayed effects with sample sizes adequate for detecting a small effect. Future studies should use standardized endpoints for testing prenatal developmental toxicity and developmental neurotoxicity (OECD TG 414 and 426), improve the description of the exposure system design and exposure conditions, conduct appropriate dosimetry characterization, blind endpoint analysis and include several exposure levels to better enable the assessment of a dose-response relationship.
The protocol was published in Pacchierotti et al., 2021 and registered in PROSPERO CRD42021227746 (https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=227746).
Cordelli E
,Ardoino L
,Benassi B
,Consales C
,Eleuteri P
,Marino C
,Sciortino M
,Villani P
,Brinkworth MH
,Chen G
,McNamee JP
,Wood AW
,Belackova L
,Verbeek J
,Pacchierotti F
... -
《-》