Construction and validation of a personalized risk prediction model for in-hospital mortality in patients with acute myocardial infarction undergoing percutaneous coronary intervention.

来自 PUBMED

作者:

Xu BZWang BChen JPXu JGWu XY

展开

摘要:

Although emergency Percutaneous Coronary Intervention (PCI) has been shown to reduce mortality in patients with Acute Myocardial Infarction (AMI), the risk of in-hospital death remains high. In this study, the authors aimed to identify risk factors associated with in-hospital mortality in AMI patients who underwent PCI, develop a nomogram prediction model, and evaluate its effectiveness. The authors retrospectively analyzed data from 1260 patients who underwent emergency PCI at Dongyang People's Hospital between June 1, 2013, and December 31, 2021. Patients were divided into two groups based on in-hospital mortality: the death group (n = 61) and the survival group (n = 1199). Clinical data between the two groups were compared. The Least Absolute Shrinkage and Selection Operator (LASSO) regression was used to select non-zero coefficients of predictive factors. Multivariable logistic regression analysis was then performed to identify independent risk factors for in-hospital mortality in AMI patients after emergency PCI. A nomogram model for predicting the risk of in-hospital mortality in AMI patients after PCI was constructed, and its predictive performance was evaluated using the c-index. Internal validation was performed using the bootstrap method with 1000 resamples. The Hosmer-Lemeshow test was used to assess the goodness of fit, and a calibration curve was plotted to evaluate the model's calibration. LASSO regression identified d-dimer, B-type natriuretic peptide, white blood cell count, heart rate, aspartate aminotransferase, systolic blood pressure, and the presence of postoperative respiratory failure as important predictive factors for in-hospital mortality in AMI patients after PCI. Multivariable logistic regression analysis showed that d-dimer, B-type natriuretic peptide, white blood cell count, systolic blood pressure, and the presence of postoperative respiratory failure were independent factors for in-hospital mortality. A nomogram model for predicting the risk of in-hospital mortality in AMI patients after PCI was constructed using these independent predictive factors. The Hosmer-Lemeshow test yielded a Chi-Square value of 9.43 (p = 0.331), indicating a good fit for the model, and the calibration curve closely approximated the ideal model. The c-index for internal validation was 0.700 (0.560‒0.834), further confirming the predictive performance of the model. Clinical decision analysis demonstrated that the nomogram model had good clinical utility, with an area under the ROC curve of 0.944 (95 % CI 0.903‒0.963), indicating excellent discriminative ability. This study identified B-type natriuretic peptide, white blood cell count, systolic blood pressure, d-dimer, and the presence of respiratory failure as independent factors for in-hospital mortality in AMI patients undergoing emergency PCI. The nomogram model based on these factors showed high predictive accuracy and feasibility.

收起

展开

DOI:

10.1016/j.clinsp.2025.100580

被引量:

0

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(100)

参考文献(0)

引证文献(0)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读