Consumption of ultra-processed foods is associated with dietary iron availability, anemia, and excess weight in socially vulnerable children.
Eating habits during childhood have undergone significant changes, with a notable increase in the consumption of ultra-processed foods (UPF). This situation deserves attention, given the close relationship between UPF and adverse health outcomes. This is due to the nutritional composition of UPF, which has high levels of health-critical nutrients such as sugar, fat, and sodium, thus compromising the overall quality of the diet. An excess of these nutrients can increase the risk of developing excess weight, nutritional deficiencies, and chronic diseases during childhood. Among the nutritional deficiencies is iron. This is due to the fact that UPF are not good sources of iron. This, combined with the fact that UPF is low in nutrients that help make iron more available, such as vitamin C, increases the risk of developing anemia. Therefore, this study aimed to assess the availability of iron, as well as the presence of anemia and excess weight in children living in situations of social vulnerability, and to determine their association with the consumption of UPF.
This is a population-based cross-sectional study. Children aged between 6 and 59 months living in slums were included. The presence of excess weight was assessed by measuring weight and height, and the presence of anemia was determined by hemoglobin concentration, assessed using the HemoCue portable hemoglobinometer. A 24-h food recall was also used to assess the relative calorie intake of UFP and the dietary availability of iron using an algorithm. All statistical analyses were carried out using the statistical software Jamovi.
In this study, 443 children were included; 19.2 % were classified as with excess weight, and 55.6 % were anemic; the average absorbable iron content was 0.54 (SD ± 0.42) mg, and 39.2 % of the calories consumed came from UPF. The association analysis showed that children with calorie share relative to UPF had a decrease of -0.12 mg of bioavailable iron (β: -0.12; 95 % CI: -0.23; -0.01). It was also possible to identify that the higher calorie share of UPF increased their chances of being classified as with excess weight and anemic by up to 116 % (OR: 2.16; 95 % CI 1.05; 4.46) and 145 % (OR: 2.45; 95 % CI: 1.26; 4.78), respectively.
The relationship found between UPF consumption and the availability of iron in the diet, excess weight, and anemia calls for attention, especially in contexts of social vulnerability. These findings demonstrate the need for greater attention to nutrition in childhood to promote an adequate and healthy diet. This can help to change the nutritional and epidemiological panorama of the population, contributing to a better general state of health for future generations of adults.
Queiroz JCLS
,Rey LC
,Ataide TDR
,Florêncio TMMT
,Silva-Neto LGR
... -
《Clinical Nutrition ESPEN》
Interventions to prevent obesity in children aged 5 to 11 years old.
Prevention of obesity in children is an international public health priority given the prevalence of the condition (and its significant impact on health, development and well-being). Interventions that aim to prevent obesity involve behavioural change strategies that promote healthy eating or 'activity' levels (physical activity, sedentary behaviour and/or sleep) or both, and work by reducing energy intake and/or increasing energy expenditure, respectively. There is uncertainty over which approaches are more effective and numerous new studies have been published over the last five years, since the previous version of this Cochrane review.
To assess the effects of interventions that aim to prevent obesity in children by modifying dietary intake or 'activity' levels, or a combination of both, on changes in BMI, zBMI score and serious adverse events.
We used standard, extensive Cochrane search methods. The latest search date was February 2023.
Randomised controlled trials in children (mean age 5 years and above but less than 12 years), comparing diet or 'activity' interventions (or both) to prevent obesity with no intervention, usual care, or with another eligible intervention, in any setting. Studies had to measure outcomes at a minimum of 12 weeks post baseline. We excluded interventions designed primarily to improve sporting performance.
We used standard Cochrane methods. Our outcomes were body mass index (BMI), zBMI score and serious adverse events, assessed at short- (12 weeks to < 9 months from baseline), medium- (9 months to < 15 months) and long-term (≥ 15 months) follow-up. We used GRADE to assess the certainty of the evidence for each outcome.
This review includes 172 studies (189,707 participants); 149 studies (160,267 participants) were included in meta-analyses. One hundred forty-six studies were based in high-income countries. The main setting for intervention delivery was schools (111 studies), followed by the community (15 studies), the home (eight studies) and a clinical setting (seven studies); one intervention was conducted by telehealth and 31 studies were conducted in more than one setting. Eighty-six interventions were implemented for less than nine months; the shortest was conducted over one visit and the longest over four years. Non-industry funding was declared by 132 studies; 24 studies were funded in part or wholly by industry. Dietary interventions versus control Dietary interventions, compared with control, may have little to no effect on BMI at short-term follow-up (mean difference (MD) 0, 95% confidence interval (CI) -0.10 to 0.10; 5 studies, 2107 participants; low-certainty evidence) and at medium-term follow-up (MD -0.01, 95% CI -0.15 to 0.12; 9 studies, 6815 participants; low-certainty evidence) or zBMI at long-term follow-up (MD -0.05, 95% CI -0.10 to 0.01; 7 studies, 5285 participants; low-certainty evidence). Dietary interventions, compared with control, probably have little to no effect on BMI at long-term follow-up (MD -0.17, 95% CI -0.48 to 0.13; 2 studies, 945 participants; moderate-certainty evidence) and zBMI at short- or medium-term follow-up (MD -0.06, 95% CI -0.13 to 0.01; 8 studies, 3695 participants; MD -0.04, 95% CI -0.10 to 0.02; 9 studies, 7048 participants; moderate-certainty evidence). Five studies (1913 participants; very low-certainty evidence) reported data on serious adverse events: one reported serious adverse events (e.g. allergy, behavioural problems and abdominal discomfort) that may have occurred as a result of the intervention; four reported no effect. Activity interventions versus control Activity interventions, compared with control, may have little to no effect on BMI and zBMI at short-term or long-term follow-up (BMI short-term: MD -0.02, 95% CI -0.17 to 0.13; 14 studies, 4069 participants; zBMI short-term: MD -0.02, 95% CI -0.07 to 0.02; 6 studies, 3580 participants; low-certainty evidence; BMI long-term: MD -0.07, 95% CI -0.24 to 0.10; 8 studies, 8302 participants; zBMI long-term: MD -0.02, 95% CI -0.09 to 0.04; 6 studies, 6940 participants; low-certainty evidence). Activity interventions likely result in a slight reduction of BMI and zBMI at medium-term follow-up (BMI: MD -0.11, 95% CI -0.18 to -0.05; 16 studies, 21,286 participants; zBMI: MD -0.05, 95% CI -0.09 to -0.02; 13 studies, 20,600 participants; moderate-certainty evidence). Eleven studies (21,278 participants; low-certainty evidence) reported data on serious adverse events; one study reported two minor ankle sprains and one study reported the incident rate of adverse events (e.g. musculoskeletal injuries) that may have occurred as a result of the intervention; nine studies reported no effect. Dietary and activity interventions versus control Dietary and activity interventions, compared with control, may result in a slight reduction in BMI and zBMI at short-term follow-up (BMI: MD -0.11, 95% CI -0.21 to -0.01; 27 studies, 16,066 participants; zBMI: MD -0.03, 95% CI -0.06 to 0.00; 26 studies, 12,784 participants; low-certainty evidence) and likely result in a reduction of BMI and zBMI at medium-term follow-up (BMI: MD -0.11, 95% CI -0.21 to 0.00; 21 studies, 17,547 participants; zBMI: MD -0.05, 95% CI -0.07 to -0.02; 24 studies, 20,998 participants; moderate-certainty evidence). Dietary and activity interventions compared with control may result in little to no difference in BMI and zBMI at long-term follow-up (BMI: MD 0.03, 95% CI -0.11 to 0.16; 16 studies, 22,098 participants; zBMI: MD -0.02, 95% CI -0.06 to 0.01; 22 studies, 23,594 participants; low-certainty evidence). Nineteen studies (27,882 participants; low-certainty evidence) reported data on serious adverse events: four studies reported occurrence of serious adverse events (e.g. injuries, low levels of extreme dieting behaviour); 15 studies reported no effect. Heterogeneity was apparent in the results for all outcomes at the three follow-up times, which could not be explained by the main setting of the interventions (school, home, school and home, other), country income status (high-income versus non-high-income), participants' socioeconomic status (low versus mixed) and duration of the intervention. Most studies excluded children with a mental or physical disability.
The body of evidence in this review demonstrates that a range of school-based 'activity' interventions, alone or in combination with dietary interventions, may have a modest beneficial effect on obesity in childhood at short- and medium-term, but not at long-term follow-up. Dietary interventions alone may result in little to no difference. Limited evidence of low quality was identified on the effect of dietary and/or activity interventions on severe adverse events and health inequalities; exploratory analyses of these data suggest no meaningful impact. We identified a dearth of evidence for home and community-based settings (e.g. delivered through local youth groups), for children living with disabilities and indicators of health inequities.
Spiga F
,Davies AL
,Tomlinson E
,Moore TH
,Dawson S
,Breheny K
,Savović J
,Gao Y
,Phillips SM
,Hillier-Brown F
,Hodder RK
,Wolfenden L
,Higgins JP
,Summerbell CD
... -
《Cochrane Database of Systematic Reviews》