-
Direct factor Xa inhibitors versus low molecular weight heparins or vitamin K antagonists for prevention of venous thromboembolism in elective primary hip or knee replacement or hip fracture repair.
People undergoing major orthopaedic surgery are at increased risk of postoperative thromboembolic events. Low molecular weight heparins (LMWHs) are recommended for thromboprophylaxis in this population. New oral anticoagulants, including direct factor Xa inhibitors, are recommended as alternatives. They may have more advantages than disadvantages compared to LMWHs and vitamin K antagonists (VKAs, another type of anticoagulant).
To assess the benefits and harms of prophylactic anticoagulation with direct factor Xa inhibitors compared with low molecular weight heparins and vitamin K antagonists in people undergoing major orthopaedic surgery for elective total hip or knee replacement or hip fracture surgery.
We searched the Cochrane Vascular Specialised Register, CENTRAL, MEDLINE, Embase, two other databases, and two trial registers to 11 November 2023. We conducted reference checks to identify additional studies.
We included randomised controlled trials (RCTs) comparing the effects of direct factor Xa inhibitors to LMWHs or VKAs in people undergoing major orthopaedic surgery.
We used standard Cochrane methods. Our primary outcomes were all-cause mortality, major venous thromboembolism (VTE), symptomatic VTE, major bleeding, and serious hepatic and non-hepatic adverse events. We evaluated the risk of bias in the included studies using Cochrane's risk of bias 1 tool. We calculated estimates of treatment effects using risk ratios (RR) with 95% confidence intervals (CIs), and used GRADE criteria to assess the certainty of the evidence.
We included 53 RCTs (44,371 participants). Participants' average age was 64 years (range: 18 to 93 years). Only one RCT compared a VKA with direct factor Xa inhibitors. All 53 RCTs compared direct factor Xa inhibitors with LMWHs. Twenty-three studies included participants undergoing total hip replacement; 21 studies, total knee replacement; and three studies included people having hip fracture surgery. The studies' average duration was approximately 42 days (range: two to 720 days). Compared to LMWHs, direct factor Xa inhibitors may have little to no effect on all-cause mortality, but the evidence is very uncertain (RR 0.83, 95% CI 0.52 to 1.31; I2 = 0%; 28 studies, 29,698 participants; very low-certainty evidence). Direct factor Xa inhibitors may make little to no difference to major venous thromboembolic events compared to LMWHs, but the evidence is very uncertain (RR 0.51, 95% CI 0.37 to 0.71; absolute risk difference: 12 fewer major VTE events per 1000 participants, 95% CI 16 fewer to 7 fewer; I2 = 48%; 28 studies, 24,574 participants; very low-certainty evidence). Compared to LMWHs, direct factor Xa inhibitors may reduce symptomatic VTE (RR 0.64, 95% CI 0.50 to 0.83; I2 = 0%; 33 studies, 31,670 participants; low-certainty evidence). The absolute benefit of substituting factor Xa inhibitors for LMWHs may be between two and five fewer symptomatic VTE episodes per 1000 patients. In the meta-analysis with all studies pooled, direct factor Xa inhibitors appeared to make little or no difference to major bleeding compared to LMWHs, but the evidence was very uncertain (RR 1.05, 95% CI 0.86 to 1.30; I2 = 15%; 36 studies, 39,778 participants; very low certainty-evidence). • In a subgroup analysis limited to studies comparing rivaroxaban to LMWHs, people given rivaroxaban may have had more major bleeding events (RR 1.94, 95% CI 1.26 to 2.98; I2 = 0%; 17 studies, 17,630 participants; low-certainty evidence). The absolute risk of substituting rivaroxaban for LMWH may be between one and seven more major bleeding events per 1000 patients. • In a subgroup analysis limited to studies comparing direct factor Xa inhibitors other than rivaroxaban to LMWHs, people given these other direct factor Xa inhibitors may have had fewer major bleeding events, but the evidence was very uncertain (RR 0.80, 95% CI 0.63 to 1.02; absolute risk difference: 3 fewer major bleeding events per 1000 participants, 95% CI 5 fewer to 0 fewer; I2 = 0%; 19 studies, 22,148 participants; very low-certainty evidence). Direct factor Xa inhibitors may make little to no difference in serious hepatic adverse events compared to LMWHs, but the evidence is very uncertain (RR 3.01, 95% CI 0.12 to 73.93; 2 studies, 3169 participants; very low-certainty evidence). Only two studies reported this outcome, with one death in the intervention group due to hepatitis reported in one study, and no events reported in the other study. People given direct factor Xa inhibitors may have a lower risk of serious non-hepatic adverse events than those given LMWHs (RR 0.89, 95% CI 0.81 to 0.97; I2 = 18%; 15 studies, 26,246 participants; low-certainty evidence). The absolute benefit of substituting factor Xa inhibitors for LMWH may be between three and 14 fewer serious non-hepatic adverse events per 1000 patients. Only one study compared a direct factor Xa inhibitor with a VKA. It reported outcome data with imprecise results due to the small number of events. It showed no difference in the effects of the study drugs.
Oral direct factor Xa inhibitors may have little to no effect on all-cause mortality, but the evidence is very uncertain. Oral direct factor Xa inhibitors may slightly reduce symptomatic VTE events when compared with LMWH. They may make little or no difference to major VTE events, but the evidence is very uncertain. In the evaluation of major bleeding, the evidence suggests rivaroxaban results in a slight increase in major bleeding events compared to LMWHs. The remaining oral direct factor Xa inhibitors may have little to no effect on major bleeding, but the evidence is very uncertain. Oral direct factor Xa inhibitors may reduce serious non-hepatic adverse events slightly compared to LMWHs. They may have little to no effect on serious hepatic adverse events, but the evidence is very uncertain. Due to the high rates of missing participants and selective outcome reporting, the effect estimates may be biased.
Salazar CA
,Basilio Flores JE
,Malaga G
,Malasquez GN
,Bernardo R
... -
《Cochrane Database of Systematic Reviews》
-
Non-vitamin K antagonist oral anticoagulants (NOACs) after transcatheter aortic valve replacement (TAVR): a network meta-analysis.
Balancing the risk of thromboembolism and bleeding after transcatheter aortic valve replacement (TAVR) remains clinically challenging. Questions regarding the efficacy and safety of non-vitamin K oral anticoagulants (NOACs) after TAVR still need to be definitively answered.
To evaluate the efficacy and safety of NOACs after TAVR in individuals with and without indication for anticoagulation.
We searched CENTRAL, MEDLINE, Embase, Web of Science, ClinicalTrials.gov, and WHO ICTRP on 7 October 2023 together with reference checking and citation searching to identify additional studies.
We searched for randomised controlled trials (RCTs) that compared NOACs versus antiplatelet therapy or vitamin K antagonists (VKAs) after TAVR in adults with or without an indication for anticoagulation.
We used standard Cochrane methods and conducted random-effects pair-wise analyses and network meta-analyses (NMAs). Our primary outcomes were all-cause mortality, cardiovascular mortality, stroke, and major bleeding. We used GRADE to assess the certainty of evidence.
We included four RCTs with 4808 participants in the NMA. Of these, one compared rivaroxaban versus antiplatelet therapy in people without an indication for anticoagulation after TAVR; one compared apixaban versus antiplatelet therapy in people without an indication for anticoagulation or versus VKA in people with an indication for anticoagulation after TAVR; one compared edoxaban versus VKA in people with an indication for anticoagulation after TAVR; and one compared edoxaban with antiplatelet therapy in people without an indication for anticoagulation after TAVR. The mean age of trial participants was 81 years. Follow-up duration ranged from 6 to 18 months. Overall, we judged the risk of bias in the included trials to be low in all domains except for blinding, which was assessed as high in all four studies. No studies evaluated dabigatran. In people without an indication for anticoagulation, rivaroxaban and apixaban may increase all-cause mortality after TAVR as compared to antiplatelet therapy (rivaroxaban: risk ratio (RR) 1.67, 95% confidence interval (CI) 1.13 to 2.46; studies = 1, participants = 1644; moderate-certainty evidence; apixaban: RR 1.71, 95% CI 0.97 to 3.02; studies = 1, participants = 1049; low-certainty evidence), while edoxaban may result in little or no difference (RR 1.59, 95% CI 0.27 to 9.36; studies = 1, participants = 229; low-certainty evidence). Low-certainty evidence suggests little or no difference between rivaroxaban, apixaban, or edoxaban and antiplatelet therapy in cardiovascular mortality (rivaroxaban: RR 1.28, 95% CI 0.78 to 2.10; studies = 1, participants = 1644; apixaban: RR 1.30, 95% CI 0.64 to 2.65; studies = 1, participants = 1049; edoxaban: RR 7.44, 95% CI 0.39 to 142.38; studies = 1, participants = 229) and between rivaroxaban or edoxaban and antiplatelets in stroke (rivaroxaban: RR 1.19, 95% CI 0.71 to 2.00; studies = 1, participants = 1644; edoxaban: RR 1.06, 95% CI 0.15 to 7.42; studies = 1, participants = 229). While rivaroxaban versus antiplatelets probably increases major bleeding after TAVR (RR 1.98, 95% CI 1.07 to 3.65; studies = 1, participants = 1644; moderate-certainty evidence), there may be little or no difference between apixaban and antiplatelet therapy (RR 1.07, 95% CI 0.70 to 1.64; studies = 1, participants = 1049; low-certainty evidence). It is unclear if edoxaban has an effect on major bleeding, although the point estimate suggests increased bleeding (versus antiplatelets: RR 2.13, 95% CI 0.54 to 8.30; studies = 1, participants = 229; low-certainty evidence). In people with an indication for anticoagulation, low-certainty evidence suggests apixaban or edoxaban may result in little to no difference in our predefined primary efficacy outcomes after TAVR when compared to VKA (all-cause mortality: apixaban: RR 1.02, 95% CI 0.59 to 1.77; studies = 1, participants = 451; edoxaban: RR 0.91, 95% CI 0.69 to 1.20; studies = 1, participants = 1426; cardiovascular mortality: apixaban: RR 1.43, 95% CI 0.76 to 2.70; studies = 1, participants = 451; edoxaban: RR 1.07, 95% CI 0.72 to 1.57; studies = 1, participants = 1426; stroke: apixaban: RR 1.28, 95% CI 0.35 to 4.70; studies = 1, participants = 451; edoxaban: RR 0.83, 95% CI 0.51 to 1.34; studies = 1, participants = 1426). While apixaban may result in a similar rate of bleeding as VKA in this population, edoxaban probably increases major bleeding after TAVR in people with an indication for anticoagulation (apixaban: RR 0.90, 95% CI 0.53 to 1.54; studies = 1, participants = 451; low-certainty evidence; edoxaban: RR 1.44, 95% CI 1.08 to 1.93; studies = 1, participants = 1426; moderate-certainty evidence).
In people without an indication for oral anticoagulation, rivaroxaban and apixaban may increase all-cause mortality when compared to antiplatelet therapy, while edoxaban may result in little or no difference. There might be little or no difference between rivaroxaban, apixaban, or edoxaban and antiplatelet therapy in cardiovascular mortality, and between rivaroxaban or edoxaban and antiplatelets in stroke. While rivaroxaban probably increases major bleeding following TAVR, there might be little or no difference between apixaban and antiplatelet therapy, and the effect of edoxaban on major bleeding remains unclear. In people with an indication for anticoagulation, apixaban and edoxaban may be as effective as VKA in preventing all-cause mortality, cardiovascular death, and stroke. Apixaban may lead to a similar rate of major bleeding as VKA in this population. However, edoxaban probably increases major bleeding following TAVR when compared to VKA. Our NMA did not show superiority of one NOAC over another for any of the primary outcomes. Head-to-head trials directly comparing NOACs against each other are required to increase the certainty of the evidence.
Al Said S
,Kaier K
,Nury E
,Alsaid D
,Gibson CM
,Bax J
,Westermann D
,Meerpohl JJ
... -
《Cochrane Database of Systematic Reviews》
-
Interventions to prevent surgical site infection in adults undergoing cardiac surgery.
Surgical site infection (SSI) is a common type of hospital-acquired infection and affects up to a third of patients following surgical procedures. It is associated with significant mortality and morbidity. In the United Kingdom alone, it is estimated to add another £30 million to the cost of adult cardiac surgery. Although generic guidance for SSI prevention exists, this is not specific to adult cardiac surgery. Furthermore, many of the risk factors for SSI are prevalent within the cardiac surgery population. Despite this, there is currently no standard of care for SSI prevention in adults undergoing cardiac surgery throughout the preoperative, intraoperative and postoperative periods of care, with variations in practice existing throughout from risk stratification, decontamination strategies and surveillance.
Primary objective: to assess the clinical effectiveness of pre-, intra-, and postoperative interventions in the prevention of cardiac SSI.
(i) to evaluate the effects of SSI prevention interventions on morbidity, mortality, and resource use; (ii) to evaluate the effects of SSI prevention care bundles on morbidity, mortality, and resource use.
We searched the Cochrane Central Register of Controlled Trials (CENTRAL) in the Cochrane Library, MEDLINE (Ovid, from inception) and Embase (Ovid, from inception) on 31 May 2021.
gov and the WHO International Clinical Trials Registry Platform (ICTRP) were also searched for ongoing or unpublished trials on 21 May 2021. No language restrictions were imposed.
We included RCTs evaluating interventions to reduce SSI in adults (≥ 18 years of age) who have undergone any cardiac surgery.
We followed the methods as per our published Cochrane protocol. Our primary outcome was surgical site infection. Our secondary outcomes were all-cause mortality, reoperation for SSI, hospital length of stay, hospital readmissions for SSI, healthcare costs and cost-effectiveness, quality of life (QoL), and adverse effects. We used the GRADE approach to assess the certainty of evidence.
A total of 118 studies involving 51,854 participants were included. Twenty-two interventions to reduce SSI in adults undergoing cardiac surgery were identified. The risk of bias was judged to be high in the majority of studies. There was heterogeneity in the study populations and interventions; consequently, meta-analysis was not appropriate for many of the comparisons and these are presented as narrative summaries. We focused our reporting of findings on four comparisons deemed to be of great clinical relevance by all review authors. Decolonisation versus no decolonisation Pooled data from three studies (n = 1564) using preoperative topical oral/nasal decontamination in all patients demonstrated an uncertain direction of treatment effect in relation to total SSI (RR 0.98, 95% CI 0.70 to 1.36; I2 = 0%; very low-certainty evidence). A single study reported that decolonisation likely results in little to no difference in superficial SSI (RR 1.35, 95% CI 0.84 to 2.15; moderate-certainty evidence) and a reduction in deep SSI (RR 0.36, 95% CI 0.17 to 0.77; high-certainty evidence). The evidence on all-cause mortality from three studies (n = 1564) is very uncertain (RR 0.66, 95% CI 0.24 to 1.84; I2 = 49%; very low-certainty evidence). A single study (n = 954) demonstrated that decolonisation may result in little to no difference in hospital readmission for SSI (RR 0.80, 95% CI 0.44 to 1.45; low-certainty evidence). A single study (n = 954) reported one case of temporary discolouration of teeth in the decolonisation arm (low-certainty-evidence. Reoperation for SSI was not reported. Tight glucose control versus standard glucose control Pooled data from seven studies (n = 880) showed that tight glucose control may reduce total SSI, but the evidence is very uncertain (RR 0.41, 95% CI 0.19 to 0.85; I2 = 29%; numbers need to treat to benefit (NNTB) = 13; very-low certainty evidence). Pooled data from seven studies (n = 3334) showed tight glucose control may reduce all-cause mortality, but the evidence is very uncertain (RR 0.61, 95% CI 0.41 to 0.91; I2 = 0%; very low-certainty evidence). Based on four studies (n = 2793), there may be little to no difference in episodes of hypoglycaemia between tight control vs. standard control, but the evidence is very uncertain (RR 2.12, 95% CI 0.51 to 8.76; I2 = 72%; very low-certainty evidence). No studies reported superficial/deep SSI, reoperation for SSI, or hospital readmission for SSI. Negative pressure wound therapy (NPWT) versus standard dressings NPWT was assessed in two studies (n = 144) and it may reduce total SSI, but the evidence is very uncertain (RR 0.17, 95% CI 0.03 to 0.97; I2 = 0%; NNTB = 10; very low-certainty evidence). A single study (n = 80) reported reoperation for SSI. The relative effect could not be estimated. The certainty of evidence was judged to be very low. No studies reported superficial/deep SSI, all-cause mortality, hospital readmission for SSI, or adverse effects. Topical antimicrobials versus no topical antimicrobials Five studies (n = 5382) evaluated topical gentamicin sponge, which may reduce total SSI (RR 0.62, 95% CI 0.46 to 0.84; I2 = 48%; NNTB = 32), superficial SSI (RR 0.60, 95% CI 0.37 to 0.98; I2 = 69%), and deep SSI (RR 0.67, 95% CI 0.47 to 0.96; I2 = 5%; low-certainty evidence. Four studies (n = 4662) demonstrated that topical gentamicin sponge may result in little to no difference in all-cause mortality, but the evidence is very uncertain (RR 0.96, 95% CI 0.65 to 1.42; I2 = 0%; very low-certainty evidence). Reoperation for SSI, hospital readmission for SSI, and adverse effects were not reported in any included studies.
This review provides the broadest and most recent review of the current evidence base for interventions to reduce SSI in adults undergoing cardiac surgery. Twenty-one interventions were identified across the perioperative period. Evidence is of low to very low certainty primarily due to significant heterogeneity in how interventions were implemented and the definitions of SSI used. Knowledge gaps have been identified across a number of practices that should represent key areas for future research. Efforts to standardise SSI outcome reporting are warranted.
Cardiothoracic Interdisciplinary Research Network
,Rogers LJ
,Vaja R
,Bleetman D
,Ali JM
,Rochon M
,Sanders J
,Tanner J
,Lamagni TL
,Talukder S
,Quijano-Campos JC
,Lai F
,Loubani M
,Murphy GJ
... -
《Cochrane Database of Systematic Reviews》
-
Treatment for women with postpartum iron deficiency anaemia.
Postpartum iron deficiency anaemia is caused by antenatal iron deficiency or excessive blood loss at delivery and might affect up to 50% of labouring women in low- and middle-income countries. Effective and safe treatment during early motherhood is important for maternal well-being and newborn care. Treatment options include oral iron supplementation, intravenous iron, erythropoietin, and red blood cell transfusion.
To assess the benefits and harms of the available treatment modalities for women with postpartum iron deficiency anaemia. These include intravenous iron, oral iron supplementation, red blood cell transfusion, and erythropoietin.
A Cochrane Information Specialist searched for all published, unpublished, and ongoing trials, without language or publication status restrictions. We searched databases including CENTRAL, MEDLINE, Embase, CINAHL, LILACS, WHO ICTRP, and ClinicalTrials.gov, together with reference checking, citation searching, and contact with study authors to identify eligible studies. We applied date limits to retrieve new records since the last search on 9 April 2015 until 11 April 2024.
We included published, unpublished, and ongoing randomised controlled trials (RCTs) that compared treatments for postpartum iron deficiency anaemia with placebo, no treatment, or alternative treatments. Cluster-randomised trials were eligible for inclusion. We included RCTs regardless of blinding. Participants were women with postpartum haemoglobin ≤ 12 g/dL, treated within six weeks after childbirth. We excluded non-randomised, quasi-randomised, and cross-over trials.
The critical outcomes of this review were maternal mortality and fatigue. The important outcomes included persistent anaemia symptoms, persistent postpartum anaemia, psychological well-being, infections, compliance with treatment, breastfeeding, length of hospital stay, serious adverse events, anaphylaxis or evidence of hypersensitivity, flushing/Fishbane reaction, injection discomfort/reaction, constipation, gastrointestinal pain, number of red blood cell transfusions, and haemoglobin levels.
We assessed risk of bias in the included studies using the Cochrane RoB 1 tool.
Two review authors independently performed study screening, risk of bias assessment, and data extraction. We contacted trial authors for supplementary data when necessary. We screened all trials for trustworthiness and scientific integrity using the Cochrane Trustworthiness Screening Tool. We conducted meta-analyses using a fixed-effect model whenever feasible to synthesise outcomes. In cases where data were not suitable for meta-analysis, we provided a narrative summary of important findings. We evaluated the overall certainty of the evidence using GRADE.
We included 33 RCTs with a total of 4558 postpartum women. Most trials were at high risk of bias for several risk of bias domains.
Most of the evidence was of low or very low certainty. Imprecision due to few events and risk of bias due to lack of blinding were the most important factors. Intravenous iron versus oral iron supplementation The evidence is very uncertain about the effect of intravenous iron on mortality (risk ratio (RR) 2.95, 95% confidence interval (CI) 0.12 to 71.96; P = 0.51; I² = not applicable; 3 RCTs; 1 event; 572 women; very low-certainty evidence). One woman died of cardiomyopathy, and another developed arrhythmia, both in the groups treated with intravenous iron. Intravenous iron probably results in a slight reduction in fatigue within 8 to 28 days (standardised mean difference -0.25, 95% CI -0.42 to -0.07; P = 0.006; I² = 47%; 2 RCTs; 515 women; moderate-certainty evidence). Breastfeeding was not reported. Oral iron probably increases the risk of constipation compared to intravenous iron (RR 0.12, 95% CI 0.06 to 0.21; P < 0.001; I² = 0%; 10 RCTs; 1798 women; moderate-certainty evidence). The evidence is very uncertain about the effect of intravenous iron on anaphylaxis or hypersensitivity (RR 2.77, 95% CI 0.31 to 24.86; P = 0.36; I² = 0%; 12 RCTs; 2195 women; very low-certainty evidence). Three women treated with intravenous iron experienced anaphylaxis or hypersensitivity. The trials that reported on haemoglobin at 8 to 28 days were too heterogeneous to pool. However, 5 of 6 RCTs favoured intravenous iron, with mean changes in haemoglobin ranging from 0.73 to 2.10 g/dL (low-certainty evidence). Red blood cell transfusion versus intravenous iron No women died in the only trial that reported on mortality (1 RCT; 7 women; very low-certainty evidence). The evidence is very uncertain about the effect of red blood cell transfusion on fatigue at 8 to 28 days (mean difference (MD) 1.20, 95% CI -2.41 to 4.81; P = 0.51; I² = not applicable; 1 RCT; 13 women; very low-certainty evidence) and breastfeeding more than six weeks postpartum (RR 0.43, 95% CI 0.12 to 1.57; P = 0.20; I² = not applicable; 1 RCT; 13 women; very low-certainty evidence). Constipation and anaphylaxis were not reported. Red blood cell transfusion may result in little to no difference in haemoglobin within 8 to 28 days (MD -1.00, 95% CI -2.02 to 0.02; P = 0.05; I² = not applicable; 1 RCT; 12 women; low-certainty evidence). Intravenous iron and oral iron supplementation versus oral iron supplementation Mortality and breastfeeding were not reported. One trial reported a greater improvement in fatigue in the intravenous and oral iron group, but the effect size could not be calculated (1 RCT; 128 women; very low-certainty evidence). Intravenous iron and oral iron may result in a reduction in constipation compared to oral iron alone (RR 0.21, 95% CI 0.07 to 0.69; P = 0.01; I² = not applicable; 1 RCT; 128 women; low-certainty evidence). There were no anaphylaxis or hypersensitivity events in the trials (2 RCTs; 168 women; very low-certainty evidence). Intravenous iron and oral iron may result in little to no difference in haemoglobin (g/dL) at 8 to 28 days (MD 0.00, 95% CI -0.48 to 0.48; P = 1.00; I² = not applicable; 1 RCT; 60 women; low-certainty evidence). Red blood cell transfusion versus no transfusion Mortality, fatigue at day 8 to 28, constipation, anaphylaxis, and haemoglobin were not reported. Red blood cell transfusion may result in little to no difference in breastfeeding more than six weeks postpartum (RR 0.91, 95% CI 0.78 to 1.07; P = 0.24; I² = not applicable; 1 RCT; 297 women; low-certainty evidence). Oral iron supplementation versus placebo or no treatment Mortality, fatigue, breastfeeding, constipation, anaphylaxis, and haemoglobin were not reported. Two trials reported on gastrointestinal symptoms, but did not report results by study arm.
Intravenous iron probably reduces fatigue slightly in the early postpartum weeks (8 to 28 days) compared to oral iron tablets, but probably results in little to no difference after four weeks. It is very uncertain if intravenous iron has an effect on mortality and anaphylaxis/hypersensitivity. Breastfeeding was not reported. Intravenous iron may increase haemoglobin slightly more than iron tablets, but the data were too heterogeneous to pool. However, changes in haemoglobin levels are a surrogate outcome, and treatment decisions should preferentially be based on patient-relevant outcomes. Iron tablets probably result in a large increase in constipation compared to intravenous iron. The effect of red blood cell transfusion compared to intravenous iron on mortality, fatigue, and breastfeeding is very uncertain. No studies reported on constipation or anaphylaxis/hypersensitivity. Red blood cell transfusion may result in little to no difference in haemoglobin at 8 to 28 days. The effect of intravenous iron and oral iron supplementation on mortality, fatigue, breastfeeding, and anaphylaxis/hypersensitivity is very uncertain or unreported. Intravenous iron and oral iron may result in a reduction in constipation compared to oral iron alone, and in little to no difference in haemoglobin. The effect of red blood cell transfusion compared to non-transfusion on mortality, fatigue, constipation, anaphylaxis/hypersensitivity, and haemoglobin is unreported. Red blood cell transfusion may result in little to no difference in breastfeeding. The effect of oral iron supplementation on mortality, fatigue, breastfeeding, constipation, anaphylaxis/hypersensitivity, and haemoglobin is unreported.
This Cochrane review had no dedicated funding.
Protocol and previous versions are available: Protocol (2013) [DOI: 10.1002/14651858.CD010861] Original review (2004) [DOI: 10.1002/14651858.CD004222.pub2] Review update (2015) [DOI: 10.1002/14651858.CD010861.pub2].
Jensen MCH
,Holm C
,Jørgensen KJ
,Schroll JB
... -
《Cochrane Database of Systematic Reviews》
-
Preoperative coronary interventions for preventing acute myocardial infarction in the perioperative period of major open vascular or endovascular surgery.
Postoperative myocardial infarction (POMI) is associated with major surgeries and remains the leading cause of mortality and morbidity in people undergoing vascular surgery, with an incidence rate ranging from 5% to 20%. Preoperative coronary interventions, such as coronary artery bypass grafting (CABG) or percutaneous coronary interventions (PCI), may help prevent acute myocardial infarction in the perioperative period of major vascular surgery when used in addition to routine perioperative drugs (e.g. statins, angiotensin-converting enzyme inhibitors, and antiplatelet agents), CABG by creating new blood circulation routes that bypass the blockages in the coronary vessels, and PCI by opening up blocked blood vessels. There is currently uncertainty around the benefits and harms of preoperative coronary interventions.
To assess the effects of preoperative coronary interventions for preventing acute myocardial infarction in the perioperative period of major open vascular or endovascular surgery.
We searched the Cochrane Vascular Specialised Register, CENTRAL, MEDLINE Ovid, Embase Ovid, LILACS, and CINAHL EBSCO on 13 March 2023. We also searched the World Health Organization International Clinical Trials Registry Platform and ClinicalTrials.gov.
We included all randomised controlled trials (RCTs) or quasi-RCTs that compared the use of preoperative coronary interventions plus usual care versus usual care for preventing acute myocardial infarction during major open vascular or endovascular surgery. We included participants of any sex or any age undergoing major open vascular surgery, major endovascular surgery, or hybrid vascular surgery.
We used standard Cochrane methods. Our primary outcomes of interest were acute myocardial infarction, all-cause mortality, and adverse events resulting from preoperative coronary interventions. Our secondary outcomes were cardiovascular mortality, quality of life, vessel or graft secondary patency, and length of hospital stay. We reported perioperative and long-term outcomes (more than 30 days after intervention). We assessed the certainty of the evidence using the GRADE approach.
We included three RCTs (1144 participants). Participants were randomised to receive either preoperative coronary revascularisation with PCI or CABG plus usual care or only usual care before major vascular surgery. One trial enrolled participants if they had no apparent evidence of coronary artery disease. Another trial selected participants classified as high risk for coronary disease through preoperative clinical and laboratorial testing. We excluded one trial from the meta-analysis because participants from both the control and the intervention groups were eligible to undergo preoperative coronary revascularisation. We identified a high risk of performance bias in all included trials, with one trial displaying a high risk of other bias. However, the risk of bias was either low or unclear in other domains. We observed no difference between groups for perioperative acute myocardial infarction, but the evidence is very uncertain (risk ratio (RR) 0.28, 95% confidence interval (CI) 0.02 to 4.57; 2 trials, 888 participants; very low-certainty evidence). One trial showed a reduction in incidence of long-term (> 30 days) acute myocardial infarction in participants allocated to the preoperative coronary interventions plus usual care group, but the evidence was very uncertain (RR 0.09, 95% CI 0.03 to 0.28; 1 trial, 426 participants; very low-certainty evidence). There was little to no effect on all-cause mortality in the perioperative period when comparing the preoperative coronary intervention plus usual care group to usual care alone, but the evidence is very uncertain (RR 0.79, 95% CI 0.31 to 2.04; 2 trials, 888 participants; very low-certainty evidence). The evidence is very uncertain about the effect of preoperative coronary interventions on long-term (follow up: 2.7 to 6.2 years) all-cause mortality (RR 0.74, 95% CI 0.30 to 1.80; 2 trials, 888 participants; very low-certainty evidence). One study reported no adverse effects related to coronary angiography, whereas the other two studies reported five deaths due to revascularisations. There may be no effect on cardiovascular mortality when comparing preoperative coronary revascularisation plus usual care to usual care in the short term (RR 0.07, 95% CI 0.00 to 1.32; 1 trial, 426 participants; low-certainty evidence). Preoperative coronary interventions plus usual care in the short term may reduce length of hospital stay slightly when compared to usual care alone (mean difference -1.17 days, 95% CI -2.05 to -0.28; 1 trial, 462 participants; low-certainty evidence). We downgraded the certainty of the evidence due to concerns about risk of bias, imprecision, and inconsistency. None of the included trials reported on quality of life or vessel graft patency at either time point, and no study reported on adverse effects, cardiovascular mortality, or length of hospital stay at long-term follow-up.
Preoperative coronary interventions plus usual care may have little or no effect on preventing perioperative acute myocardial infarction and reducing perioperative all-cause mortality compared to usual care, but the evidence is very uncertain. Similarly, limited, very low-certainty evidence shows that preoperative coronary interventions may have little or no effect on reducing long-term all-cause mortality. There is very low-certainty evidence that preoperative coronary interventions plus usual care may prevent long-term myocardial infarction, and low-certainty evidence that they may reduce length of hospital stay slightly, but not cardiovascular mortality in the short term, when compared to usual care alone. Adverse effects of preoperative coronary interventions were poorly reported in trials. Quality of life and vessel or graft patency were not reported. We downgraded the certainty of the evidence most frequently for high risk of bias, inconsistency, or imprecision. None of the analysed trials provided significant data on subgroups of patients who could potentially experience more substantial benefits from preoperative coronary intervention (e.g. altered ventricular ejection fraction). There is a need for evidence from larger and homogeneous RCTs to provide adequate statistical power to assess the role of preoperative coronary interventions for preventing acute myocardial infarction in the perioperative period of major open vascular or endovascular surgery.
Botelho FE
,Flumignan RL
,Shiomatsu GY
,de Castro-Santos G
,Cacione DG
,Leite JO
,Baptista-Silva JC
... -
《Cochrane Database of Systematic Reviews》