Factors Associated With the Accuracy of Large Language Models in Basic Medical Science Examinations: Cross-Sectional Study.

来自 PUBMED

作者:

Kaewboonlert NPoontananggul JPongsuwan NBhakdisongkhram G

展开

摘要:

Artificial intelligence (AI) has become widely applied across many fields, including medical education. Content validation and its answers are based on training datasets and the optimization of each model. The accuracy of large language model (LLMs) in basic medical examinations and factors related to their accuracy have also been explored. We evaluated factors associated with the accuracy of LLMs (GPT-3.5, GPT-4, Google Bard, and Microsoft Bing) in answering multiple-choice questions from basic medical science examinations. We used questions that were closely aligned with the content and topic distribution of Thailand's Step 1 National Medical Licensing Examination. Variables such as the difficulty index, discrimination index, and question characteristics were collected. These questions were then simultaneously input into ChatGPT (with GPT-3.5 and GPT-4), Microsoft Bing, and Google Bard, and their responses were recorded. The accuracy of these LLMs and the associated factors were analyzed using multivariable logistic regression. This analysis aimed to assess the effect of various factors on model accuracy, with results reported as odds ratios (ORs). The study revealed that GPT-4 was the top-performing model, with an overall accuracy of 89.07% (95% CI 84.76%-92.41%), significantly outperforming the others (P<.001). Microsoft Bing followed with an accuracy of 83.69% (95% CI 78.85%-87.80%), GPT-3.5 at 67.02% (95% CI 61.20%-72.48%), and Google Bard at 63.83% (95% CI 57.92%-69.44%). The multivariable logistic regression analysis showed a correlation between question difficulty and model performance, with GPT-4 demonstrating the strongest association. Interestingly, no significant correlation was found between model accuracy and question length, negative wording, clinical scenarios, or the discrimination index for most models, except for Google Bard, which showed varying correlations. The GPT-4 and Microsoft Bing models demonstrated equal and superior accuracy compared to GPT-3.5 and Google Bard in the domain of basic medical science. The accuracy of these models was significantly influenced by the item's difficulty index, indicating that the LLMs are more accurate when answering easier questions. This suggests that the more accurate models, such as GPT-4 and Bing, can be valuable tools for understanding and learning basic medical science concepts.

收起

展开

DOI:

10.2196/58898

被引量:

0

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(100)

参考文献(0)

引证文献(0)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读