Factors Associated With the Accuracy of Large Language Models in Basic Medical Science Examinations: Cross-Sectional Study.
Artificial intelligence (AI) has become widely applied across many fields, including medical education. Content validation and its answers are based on training datasets and the optimization of each model. The accuracy of large language model (LLMs) in basic medical examinations and factors related to their accuracy have also been explored.
We evaluated factors associated with the accuracy of LLMs (GPT-3.5, GPT-4, Google Bard, and Microsoft Bing) in answering multiple-choice questions from basic medical science examinations.
We used questions that were closely aligned with the content and topic distribution of Thailand's Step 1 National Medical Licensing Examination. Variables such as the difficulty index, discrimination index, and question characteristics were collected. These questions were then simultaneously input into ChatGPT (with GPT-3.5 and GPT-4), Microsoft Bing, and Google Bard, and their responses were recorded. The accuracy of these LLMs and the associated factors were analyzed using multivariable logistic regression. This analysis aimed to assess the effect of various factors on model accuracy, with results reported as odds ratios (ORs).
The study revealed that GPT-4 was the top-performing model, with an overall accuracy of 89.07% (95% CI 84.76%-92.41%), significantly outperforming the others (P<.001). Microsoft Bing followed with an accuracy of 83.69% (95% CI 78.85%-87.80%), GPT-3.5 at 67.02% (95% CI 61.20%-72.48%), and Google Bard at 63.83% (95% CI 57.92%-69.44%). The multivariable logistic regression analysis showed a correlation between question difficulty and model performance, with GPT-4 demonstrating the strongest association. Interestingly, no significant correlation was found between model accuracy and question length, negative wording, clinical scenarios, or the discrimination index for most models, except for Google Bard, which showed varying correlations.
The GPT-4 and Microsoft Bing models demonstrated equal and superior accuracy compared to GPT-3.5 and Google Bard in the domain of basic medical science. The accuracy of these models was significantly influenced by the item's difficulty index, indicating that the LLMs are more accurate when answering easier questions. This suggests that the more accurate models, such as GPT-4 and Bing, can be valuable tools for understanding and learning basic medical science concepts.
Kaewboonlert N
,Poontananggul J
,Pongsuwan N
,Bhakdisongkhram G
... -
《-》
Evaluating Bard Gemini Pro and GPT-4 Vision Against Student Performance in Medical Visual Question Answering: Comparative Case Study.
The rapid development of large language models (LLMs) such as OpenAI's ChatGPT has significantly impacted medical research and education. These models have shown potential in fields ranging from radiological imaging interpretation to medical licensing examination assistance. Recently, LLMs have been enhanced with image recognition capabilities.
This study aims to critically examine the effectiveness of these LLMs in medical diagnostics and training by assessing their accuracy and utility in answering image-based questions from medical licensing examinations.
This study analyzed 1070 image-based multiple-choice questions from the AMBOSS learning platform, divided into 605 in English and 465 in German. Customized prompts in both languages directed the models to interpret medical images and provide the most likely diagnosis. Student performance data were obtained from AMBOSS, including metrics such as the "student passed mean" and "majority vote." Statistical analysis was conducted using Python (Python Software Foundation), with key libraries for data manipulation and visualization.
GPT-4 1106 Vision Preview (OpenAI) outperformed Bard Gemini Pro (Google), correctly answering 56.9% (609/1070) of questions compared to Bard's 44.6% (477/1070), a statistically significant difference (χ2₁=32.1, P<.001). However, GPT-4 1106 left 16.1% (172/1070) of questions unanswered, significantly higher than Bard's 4.1% (44/1070; χ2₁=83.1, P<.001). When considering only answered questions, GPT-4 1106's accuracy increased to 67.8% (609/898), surpassing both Bard (477/1026, 46.5%; χ2₁=87.7, P<.001) and the student passed mean of 63% (674/1070, SE 1.48%; χ2₁=4.8, P=.03). Language-specific analysis revealed both models performed better in German than English, with GPT-4 1106 showing greater accuracy in German (282/465, 60.65% vs 327/605, 54.1%; χ2₁=4.4, P=.04) and Bard Gemini Pro exhibiting a similar trend (255/465, 54.8% vs 222/605, 36.7%; χ2₁=34.3, P<.001). The student majority vote achieved an overall accuracy of 94.5% (1011/1070), significantly outperforming both artificial intelligence models (GPT-4 1106: χ2₁=408.5, P<.001; Bard Gemini Pro: χ2₁=626.6, P<.001).
Our study shows that GPT-4 1106 Vision Preview and Bard Gemini Pro have potential in medical visual question-answering tasks and to serve as a support for students. However, their performance varies depending on the language used, with a preference for German. They also have limitations in responding to non-English content. The accuracy rates, particularly when compared to student responses, highlight the potential of these models in medical education, yet the need for further optimization and understanding of their limitations in diverse linguistic contexts remains critical.
Roos J
,Martin R
,Kaczmarczyk R
《-》
Comparison of Two Modern Survival Prediction Tools, SORG-MLA and METSSS, in Patients With Symptomatic Long-bone Metastases Who Underwent Local Treatment With Surgery Followed by Radiotherapy and With Radiotherapy Alone.
Survival estimation for patients with symptomatic skeletal metastases ideally should be made before a type of local treatment has already been determined. Currently available survival prediction tools, however, were generated using data from patients treated either operatively or with local radiation alone, raising concerns about whether they would generalize well to all patients presenting for assessment. The Skeletal Oncology Research Group machine-learning algorithm (SORG-MLA), trained with institution-based data of surgically treated patients, and the Metastases location, Elderly, Tumor primary, Sex, Sickness/comorbidity, and Site of radiotherapy model (METSSS), trained with registry-based data of patients treated with radiotherapy alone, are two of the most recently developed survival prediction models, but they have not been tested on patients whose local treatment strategy is not yet decided.
(1) Which of these two survival prediction models performed better in a mixed cohort made up both of patients who received local treatment with surgery followed by radiotherapy and who had radiation alone for symptomatic bone metastases? (2) Which model performed better among patients whose local treatment consisted of only palliative radiotherapy? (3) Are laboratory values used by SORG-MLA, which are not included in METSSS, independently associated with survival after controlling for predictions made by METSSS?
Between 2010 and 2018, we provided local treatment for 2113 adult patients with skeletal metastases in the extremities at an urban tertiary referral academic medical center using one of two strategies: (1) surgery followed by postoperative radiotherapy or (2) palliative radiotherapy alone. Every patient's survivorship status was ascertained either by their medical records or the national death registry from the Taiwanese National Health Insurance Administration. After applying a priori designated exclusion criteria, 91% (1920) were analyzed here. Among them, 48% (920) of the patients were female, and the median (IQR) age was 62 years (53 to 70 years). Lung was the most common primary tumor site (41% [782]), and 59% (1128) of patients had other skeletal metastases in addition to the treated lesion(s). In general, the indications for surgery were the presence of a complete pathologic fracture or an impending pathologic fracture, defined as having a Mirels score of ≥ 9, in patients with an American Society of Anesthesiologists (ASA) classification of less than or equal to IV and who were considered fit for surgery. The indications for radiotherapy were relief of pain, local tumor control, prevention of skeletal-related events, and any combination of the above. In all, 84% (1610) of the patients received palliative radiotherapy alone as local treatment for the target lesion(s), and 16% (310) underwent surgery followed by postoperative radiotherapy. Neither METSSS nor SORG-MLA was used at the point of care to aid clinical decision-making during the treatment period. Survival was retrospectively estimated by these two models to test their potential for providing survival probabilities. We first compared SORG to METSSS in the entire population. Then, we repeated the comparison in patients who received local treatment with palliative radiation alone. We assessed model performance by area under the receiver operating characteristic curve (AUROC), calibration analysis, Brier score, and decision curve analysis (DCA). The AUROC measures discrimination, which is the ability to distinguish patients with the event of interest (such as death at a particular time point) from those without. AUROC typically ranges from 0.5 to 1.0, with 0.5 indicating random guessing and 1.0 a perfect prediction, and in general, an AUROC of ≥ 0.7 indicates adequate discrimination for clinical use. Calibration refers to the agreement between the predicted outcomes (in this case, survival probabilities) and the actual outcomes, with a perfect calibration curve having an intercept of 0 and a slope of 1. A positive intercept indicates that the actual survival is generally underestimated by the prediction model, and a negative intercept suggests the opposite (overestimation). When comparing models, an intercept closer to 0 typically indicates better calibration. Calibration can also be summarized as log(O:E), the logarithm scale of the ratio of observed (O) to expected (E) survivors. A log(O:E) > 0 signals an underestimation (the observed survival is greater than the predicted survival); and a log(O:E) < 0 indicates the opposite (the observed survival is lower than the predicted survival). A model with a log(O:E) closer to 0 is generally considered better calibrated. The Brier score is the mean squared difference between the model predictions and the observed outcomes, and it ranges from 0 (best prediction) to 1 (worst prediction). The Brier score captures both discrimination and calibration, and it is considered a measure of overall model performance. In Brier score analysis, the "null model" assigns a predicted probability equal to the prevalence of the outcome and represents a model that adds no new information. A prediction model should achieve a Brier score at least lower than the null-model Brier score to be considered as useful. The DCA was developed as a method to determine whether using a model to inform treatment decisions would do more good than harm. It plots the net benefit of making decisions based on the model's predictions across all possible risk thresholds (or cost-to-benefit ratios) in relation to the two default strategies of treating all or no patients. The care provider can decide on an acceptable risk threshold for the proposed treatment in an individual and assess the corresponding net benefit to determine whether consulting with the model is superior to adopting the default strategies. Finally, we examined whether laboratory data, which were not included in the METSSS model, would have been independently associated with survival after controlling for the METSSS model's predictions by using the multivariable logistic and Cox proportional hazards regression analyses.
Between the two models, only SORG-MLA achieved adequate discrimination (an AUROC of > 0.7) in the entire cohort (of patients treated operatively or with radiation alone) and in the subgroup of patients treated with palliative radiotherapy alone. SORG-MLA outperformed METSSS by a wide margin on discrimination, calibration, and Brier score analyses in not only the entire cohort but also the subgroup of patients whose local treatment consisted of radiotherapy alone. In both the entire cohort and the subgroup, DCA demonstrated that SORG-MLA provided more net benefit compared with the two default strategies (of treating all or no patients) and compared with METSSS when risk thresholds ranged from 0.2 to 0.9 at both 90 days and 1 year, indicating that using SORG-MLA as a decision-making aid was beneficial when a patient's individualized risk threshold for opting for treatment was 0.2 to 0.9. Higher albumin, lower alkaline phosphatase, lower calcium, higher hemoglobin, lower international normalized ratio, higher lymphocytes, lower neutrophils, lower neutrophil-to-lymphocyte ratio, lower platelet-to-lymphocyte ratio, higher sodium, and lower white blood cells were independently associated with better 1-year and overall survival after adjusting for the predictions made by METSSS.
Based on these discoveries, clinicians might choose to consult SORG-MLA instead of METSSS for survival estimation in patients with long-bone metastases presenting for evaluation of local treatment. Basing a treatment decision on the predictions of SORG-MLA could be beneficial when a patient's individualized risk threshold for opting to undergo a particular treatment strategy ranged from 0.2 to 0.9. Future studies might investigate relevant laboratory items when constructing or refining a survival estimation model because these data demonstrated prognostic value independent of the predictions of the METSSS model, and future studies might also seek to keep these models up to date using data from diverse, contemporary patients undergoing both modern operative and nonoperative treatments.
Level III, diagnostic study.
Lee CC
,Chen CW
,Yen HK
,Lin YP
,Lai CY
,Wang JL
,Groot OQ
,Janssen SJ
,Schwab JH
,Hsu FM
,Lin WH
... -
《-》
Performance of ChatGPT Across Different Versions in Medical Licensing Examinations Worldwide: Systematic Review and Meta-Analysis.
Over the past 2 years, researchers have used various medical licensing examinations to test whether ChatGPT (OpenAI) possesses accurate medical knowledge. The performance of each version of ChatGPT on the medical licensing examination in multiple environments showed remarkable differences. At this stage, there is still a lack of a comprehensive understanding of the variability in ChatGPT's performance on different medical licensing examinations.
In this study, we reviewed all studies on ChatGPT performance in medical licensing examinations up to March 2024. This review aims to contribute to the evolving discourse on artificial intelligence (AI) in medical education by providing a comprehensive analysis of the performance of ChatGPT in various environments. The insights gained from this systematic review will guide educators, policymakers, and technical experts to effectively and judiciously use AI in medical education.
We searched the literature published between January 1, 2022, and March 29, 2024, by searching query strings in Web of Science, PubMed, and Scopus. Two authors screened the literature according to the inclusion and exclusion criteria, extracted data, and independently assessed the quality of the literature concerning Quality Assessment of Diagnostic Accuracy Studies-2. We conducted both qualitative and quantitative analyses.
A total of 45 studies on the performance of different versions of ChatGPT in medical licensing examinations were included in this study. GPT-4 achieved an overall accuracy rate of 81% (95% CI 78-84; P<.01), significantly surpassing the 58% (95% CI 53-63; P<.01) accuracy rate of GPT-3.5. GPT-4 passed the medical examinations in 26 of 29 cases, outperforming the average scores of medical students in 13 of 17 cases. Translating the examination questions into English improved GPT-3.5's performance but did not affect GPT-4. GPT-3.5 showed no difference in performance between examinations from English-speaking and non-English-speaking countries (P=.72), but GPT-4 performed better on examinations from English-speaking countries significantly (P=.02). Any type of prompt could significantly improve GPT-3.5's (P=.03) and GPT-4's (P<.01) performance. GPT-3.5 performed better on short-text questions than on long-text questions. The difficulty of the questions affected the performance of GPT-3.5 and GPT-4. In image-based multiple-choice questions (MCQs), ChatGPT's accuracy rate ranges from 13.1% to 100%. ChatGPT performed significantly worse on open-ended questions than on MCQs.
GPT-4 demonstrates considerable potential for future use in medical education. However, due to its insufficient accuracy, inconsistent performance, and the challenges posed by differing medical policies and knowledge across countries, GPT-4 is not yet suitable for use in medical education.
PROSPERO CRD42024506687; https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=506687.
Liu M
,Okuhara T
,Chang X
,Shirabe R
,Nishiie Y
,Okada H
,Kiuchi T
... -
《JOURNAL OF MEDICAL INTERNET RESEARCH》