Suberosin attenuates rheumatoid arthritis by repolarizing macrophages and inhibiting synovitis via the JAK/STAT signaling pathway.

来自 PUBMED

作者:

Liu HLi QChen YDong MLiu HZhang JYang LYin GXie Q

展开

摘要:

Rheumatoid arthritis (RA) is a systemic disease that primarily manifests as chronic synovitis of the symmetric small joints. Despite the availability of various targeted drugs for RA, these treatments are limited by adverse reactions, warranting new treatment approaches. Suberosin (SBR), isolated from Plumbago zeylanica-a medicinal plant traditionally used to treat RA in Asia-possesses notable biological activities. This study aimed to investigate the effects and potential underlying pathways of SBR on RA. Tumor necrosis factor-alpha (TNF-α) induced inflammation in RA-derived fibroblast-like synoviocytes (RA-FLS), and the expression of proinflammatory mediators was assessed using q-RT PCR and ELISA after treatment with various SBR concentrations. Bone marrow-derived macrophages (BMDMs) were induced to differentiate into M1 and M2 macrophages, followed by treatment with various SBR concentrations and macrophage polarization assessment. Low-dose (0.5 mg/kg/d) and high-dose (2 mg/kg/d) SBR regimens were administered to a collagen-induced arthritis (CIA) mouse model for 21 days, and the anti-arthritic effects of SBR were evaluated. Network pharmacology and molecular docking analyses were used to predict the anti-arthritic targets of SBR. The effect of SBR on the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway was evaluated. SBR suppressed macrophage polarization toward the M1 phenotype while enhancing their polarization toward the M2 phenotype. SBR reduced the levels of proinflammatory mediators in TNF-α-induced RA-FLS. Mechanistically, SBR inhibited the phosphorylation of the JAK1/STAT3 signaling pathway in RA-FLS and M1 macrophages and promoted the phosphorylation of the JAK1/STAT6 pathway in M2 macrophages, enhancing M2 polarization. In vivo, prophylactic treatment of low-dose SBR reduced M1 macrophage infiltration into synovial tissue, increased the proportion of M2 macrophages, and decreased the expression of inflammatory mediators in the serum and synovial tissue, alleviating synovial inflammation. SBR significantly alleviated arthritis in CIA mice through macrophage repolarization and inhibition of inflammation. SBR significantly reduced clinical symptoms, joint pathological damage, and expression inflammatory cytokine expression in CIA mice. SBR exhibited anti-arthritic effects via the JAK1/STAT3 and JAK1/STAT6 signaling pathways, inhibiting synovial tissue inflammation and M1 macrophage polarization while promoting M2 macrophage polarization. Therefore, SBR may be an effective candidate for RA treatment.

收起

展开

DOI:

10.1186/s13075-025-03481-3

被引量:

0

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(100)

参考文献(0)

引证文献(0)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读